Data Structures for Generalised Arc Consistency for Extensional Constraints

Ian P. Gent, Chris Jefferson, Ian Miguel and Peter Nightingale
Finite domain constraint satisfaction problem (CSP)

- Variables with a finite domain
 - e.g. $A \in \{2, 3\}$, $B \in \{1, 2, 4\}$
- Constraints placed on variables
 - $A = B$, $A + B = 4$
- A solution is a valid assignment to all variables
 - $A = 3$, $B = 1$
- NP-complete decision problem
Extensional constraints

- Constraints expressed as a table of allowed combinations of values (*tuples*)
- Can express any constraint, albeit with practical limits on the number of tuples
- Useful for constraints which cannot be efficiently translated into constraints provided by the solver
 - Constraints with unusual structure
 - Used in BIBD, Graceful Graphs, Semigroup counting, Golomb ruler...
GAC

- Various algorithms to enforce GAC
 - If a value is not contained in any *valid* and *allowed* tuple, it cannot be part of any solution to the CSP instance, so remove it
 - Requires fast search through allowed tuples list for the next *valid* tuple

- We test with GAC-Schema and Minion's watched literal table constraint
Tries

Also have orderings y,x,z and z,x,y
Tries

- Tries are searched depth-first, following only branches for values which are in their respective domain.
- To find a second tuple, search is resumed from the leaf node.
Next-Difference Lists

tuple
index

x y z
<0 0 0>

x y z
<0 0 1>

x y z
<1 1 0>

x y z
<1 1 1>

NextDifferent array

tuple
Next-Difference Lists

- Next-Difference lists sometimes able to jump forward further than tries, never less far.
- Next-Difference lists slightly more expensive
 - Iterates from beginning of tuple at each step
Comparisons

• Lecoutre and Szymanek (2006)
 – Algorithm based on binary search (Binary)
• Lhomme and Régin (2005)
 – New Hologram data structure (Hologram)
• Bessière and Régin (1997)
 – Algorithm which iterates through the list (Simple)
• Comparison in context of Minion's watched literal adaptation of GAC-2001
Tries vs. Simple

Time limit of 1200s

Nodes per second ratio

Run-time for Simple (s)
Tries vs. Simple

Run-time for Simple (s)

Nodes per second ratio

- BIBD
- Graceful Graphs
- Prime Queens
- Golumb Ruler
- Semigroup
Tries vs. Hologram

Nodes per second ratio

Run time for Hologram (s)
Tries vs. Binary

Nodes per second ratio

Run time for Binary (s)
Tries vs. Next-Difference Lists

Nodes per second ratio

Run time for Next-Difference List (with one list) (s)
Conclusions

• Proposed two new methods
 – Tries somewhat more effective

• Built empirical case that Tries scales better than Hologram or Binary
 – Both random and structured instances
Thank you

• Any questions?
Structured problems

- Graceful Graphs: ternary constraints
- Prime Queens: ternary constraints
- Golomb Ruler: quaternary and ternary table constraints