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Abstract

Constraint Programming (CP) is a proven set of techniques for solving complex
combinatorial problems from a range of disciplines. The problem is specified
as a set of decision variables (with finite domains) and constraints linking the
variables. Local reasoning (propagation) on the constraints is central to CP.
Many constraints have efficient constraint-specific propagation algorithms. In
this work, we generate custom propagators for constraints. These custom prop-
agators can be very efficient, even approaching (and in some cases exceeding)
the efficiency of hand-optimised propagators.

Given an arbitrary constraint, we show how to generate a custom propagator
that establishes GAC in small polynomial time. This is done by precomputing
the propagation that would be performed on every relevant subdomain. The
number of relevant subdomains, and therefore the size of the generated propaga-
tor, is potentially exponential in the number and domain size of the constrained
variables.

The limiting factor of our approach is the size of the generated propagators.
We investigate symmetry as a means of reducing that size. We exploit the sym-
metries of the constraint to merge symmetric parts of the generated propagator.
This extends the reach of our approach to somewhat larger constraints, with a
small run-time penalty.

Our experimental results show that, compared with optimised implementa-
tions of the table constraint, our techniques can lead to an order of magnitude
speedup. Propagation is so fast that the generated propagators compare well
with hand-written carefully optimised propagators for the same constraints, and
the time taken to generate a propagator is more than repaid.
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1. Introduction

Constraint Programming is a proven technology for solving complex combi-
natorial problems from a range of disciplines, including scheduling (nurse roster-
ing, resource allocation for data centres), planning (contingency planning for air
traffic control, route finding for international container shipping, assigning ser-
vice professionals to tasks) and design (of cryptographic S-boxes, carpet cutting
to minimise waste). Constraint solving of a combinatorial problem proceeds in
two phases. First, the problem is modelled as a set of decision variables with
a set of constraints on those variables that a solution must satisfy. A decision
variable represents a choice that must be made in order to solve the problem.
Consider Sudoku as a simple example. Each cell in the 9 × 9 square must be
filled in such a way that each row, column and 3 × 3 sub-square contain all
distinct non-zero digits. In a constraint model of Sudoku, each cell is a decision
variable with the domain {1 . . . 9}. The constraints require that subsets of the
decision variables corresponding to the rows, columns and sub-squares of the
Sudoku grid are assigned distinct values.

The second phase is solving the modelled problem using a constraint solver.
A solution is an assignment to decision variables satisfying all constraints, e.g.
a valid solution to a Sudoku puzzle. A constraint solver typically works by
performing a systematic search through a space of possible solutions. This
space is usually vast, so search is combined with constraint propagation, a form of
inference that allows the solver to narrow down the search space considerably. A
constraint propagator is an algorithm that captures a particular pattern of such
inference, for example requiring each of a collection of variables to take distinct
values. A state-of-the-art constraint solver has a suite of such propagators
to apply as appropriate to an input problem. In this paper we will consider
propagators that establish a property called Generalised Arc Consistency (GAC)
[1], which requires that every value in the domains of the variables in the scope
of a particular constraint participates in at least one assignment that satisfies
that constraint.

Constraint models of structured problems often contain many copies of a
constraint, which differ only in their scope. English Peg Solitaire,1 for example,
is naturally modelled with a move constraint for each of 76 moves, at each of 31
time steps, giving 2,356 copies of the constraint [2]. Efficient implementation of
such a constraint is vital to solving efficiency, but choosing an implementation
is often difficult.

The solver may provide a hand-optimised propagator matching the con-
straint. If it does not, the modeller can use a variety of algorithms which
achieve GAC propagation for arbitrary constraints, for example GAC2001 [3],
GAC-Schema [4], MDDC [5], STR2 [6], the Trie table constraint [7], or Regu-
lar [8]. Typically these propagators behave well when the data structure they
use (whether it is a trie, multi-valued decision diagram (MDD), finite automa-

1Problem 37 at www.csplib.org
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ton, or list of tuples) is small. They all run in exponential time in the worst
case, but run in polynomial time when the data structure is of polynomial size.

The algorithms we give herein generate GAC propagators for arbitrary con-
straints that run in time O(nd) (where n is the number of variables and d is the
maximum domain size), in extreme cases an exponential factor faster than any
table constraint propagator [3, 7, 9, 5, 6, 10, 11, 12, 13]. As our experiments
show, generated propagators can even outperform hand-optimised propagators
when performing the same propagation. It can take substantial time to gener-
ate a GAC propagator, however the generation time is more than repaid on the
most difficult problem instances in our experiments.

Our approach is general but in practice does not scale to large constraints as
it precomputes domain deletions for all possible inputs of the propagator (i.e. all
reachable subsets of the initial domains). However, it remains widely applicable
— like the aforementioned Peg Solitaire model, many other constraint models
contain a large number of copies of one or more small constraints.

Propagator Trees

Our first approach is to generate a binary tree to store domain deletions
for all reachable subdomains. The tree branches on whether a particular literal
(variable, value pair) is in domain or not, and each node of the tree is labelled
with a set of domain deletions. After some background in Section 2, the basic
approach is described in Section 3.

We have two methods of executing the propagator trees. The first is to
transform the tree into a program, compile it and link it to the constraint
solver. The second is a simple virtual machine: the propagator tree is encoded
as a sequence of instructions, and the constraint solver has a generic propagator
that executes it. Both these methods are described in Section 3.5.

The generated trees can be very large, but this approach is made feasible
for small constraints (both to generate the tree, and to transform, compile and
execute it) by refinements and heuristics described in Section 4. The binary
tree approach is experimentally evaluated in Section 5, demonstrating a clear
speed-up on three different problem classes.

Exploiting Symmetry

The second part of the paper is about exploiting symmetry. We define the
symmetry of a constraint as a permutation group on the literals, such that
any permutation in the group maintains the semantics of the constraint. This
allows us to compress the propagator trees: any two subtrees that are symmetric
are compressed into one. In some cases this replaces an exponential sized tree
with a polynomially sized symmetry-reduced tree. Section 6 gives the necessary
theoretical background. In that section we develop a novel algorithm for finding
the canonical image of a sequence of sets under a group that acts pointwise on
the sets. We believe this is a small contribution to computational group theory.

Section 7 describes how the symmetry-reduced trees are generated, and
gives some bounds on their size under some symmetry groups. Executing the
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symmetry-reduced trees is not as simple as for the standard trees. Both the
code generation and VM approaches are adapted in Section 7.3.

In Section 8 we evaluate symmetry-reduced trees compared to standard prop-
agator trees. We show that exploiting symmetry allows propagator trees to scale
to larger constraints.

2. Theoretical Background

We briefly give the most relevant definitions, and refer the reader elsewhere
for more detailed discussion [1].

Definition 1. A CSP instance, P , is a triple 〈V,D,C〉, where: V is a finite
set of variables; D is a function from variables to their domains, where ∀v ∈
V : D(v) ⊂ Z and D(v) is finite; and C is a set of constraints. A literal of P is
a pair 〈v, d〉, where v ∈ V and d ∈ D(v). An assignment to any subset X ⊆ V
is a set consisting of exactly one literal for each variable in X. Each constraint
c is defined over a list of variables, denoted scope(c). A constraint either forbids
or allows each assignment to the variables in its scope. An assignment S to V
satisfies a constraint c if S contains an assignment allowed by c. A solution
to P is any assignment to V that satisfies all the constraints of P .

Constraint propagators work with subdomain lists, as defined below.

Definition 2. For a set of variables X = {x1 . . . xn} with original domains
D(x1), . . . , D(xn), a subdomain list S for X is a function from variables to
sets of domain values that satisfies: ∀i ∈ {1 . . . n} : S(xi) ⊆ D(xi). We extend
the ⊆ notation to write R ⊆ S for subdomain lists R and S iff ∀i ∈ {1 . . . n} :
R(xi) ⊆ S(xi). Given a CSP instance P = 〈V,D,C〉, a search state for P is a
subdomain list for V . An assignment A is contained in a subdomain list S iff
∀ 〈v, d〉 ∈ A : d ∈ S(v) (and if S(v) is not defined then d ∈ S(v) is false).

Backtracking search operates on search states to solve CSPs. During solving,
the search state is changed in two ways: branching and propagation. Propaga-
tion removes literals from the current search state without removing solutions.
Herein, we consider only propagators that establish Generalised Arc Consis-
tency (GAC), which we define below. Branching is the operation that creates a
search tree. For a particular search state S, branching splits S into two states
S1 and S2, typically by splitting the domain of a variable into two disjoint sets.
For example, in S1 branching might make an assignment x 7→ a (by excluding
all other literals of x), and in S2 remove only the literal x 7→ a. S1 and S2 are
recursively solved in turn.

Definition 3. Given a constraint c and a subdomain list S of scope(c), a literal
〈v, d〉 is supported iff there exists an assignment that satisfies c and is contained
in S and contains 〈v, d〉. S is Generalised Arc Consistent (GAC) with
respect to c iff, for every d ∈ S(v), the literal 〈v, d〉 is supported.
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Any literal that does not satisfy the test in Definition 3 may be removed.
In practice, CP solvers fail and backtrack if any domain is empty. Therefore
propagators can assume that every domain has at least one value in it when
they are called. Therefore we give a definition of GAC propagator that has as
a precondition that all domains contain at least one value. This precondition
allows us to generate smaller and more efficient propagators in some cases.

Definition 4. Given a CSP P = 〈V,D,C〉, a search state S for P where each
variable x ∈ V has a non-empty domain: |S(x)| > 0, and a constraint c ∈ C,
the GAC propagator for c returns a new search state S′ which:

1. For all variables not in scope(c): is identical to S.

2. For all variables in scope(c): omits all (and only) literals in S that are not
supported in c, and is otherwise identical to S.

3. Propagator Generation

We introduce this section by giving a näıve method that illustrates our over-
all approach. Then we present a more sophisticated method that forms the
basis for the rest of this paper.

3.1. A Näıve Method

GAC propagation is NP-hard for some families of constraints defined inten-
sionally. For example, establishing GAC on the constraint

∑
i xi = 0 is NP-hard,

as it is equivalent to the subset-sum problem [14](§35.5). However, given a con-
straint c on n variables, each with domain size d, it is possible to generate a
GAC propagator that runs in time O(nd). The approach is to precompute the
deletions performed by a GAC algorithm for every subdomain list for scope(c).
Thus, much of the computational cost is moved from the propagator (where it
may be incurred many times during search) to the preprocessing step (which
only occurs once).

The precomputed deletions are stored in an array T mapping subdomain
lists to sets of literals. The generated propagator reads the domains (in O(nd)
time), looks up the appropriate subdomain list in T and performs the required
deletions. T can be indexed as follows: for each literal in the initial domains,
represent its presence or absence in the subdomain list with a bit, and concate-
nate the bits to form an integer.

T can be generated in O((2d − 1)n.n.dn) time. There are 2d − 1 non-empty
subdomains of a size d domain, and so (2d − 1)n non-empty subdomain lists on
n variables. For each, GAC is enforced in O(n.dn) time and the set of deletions
is recorded. As there are at most nd deletions, T is size at most (2d − 1)n.nd.
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 Infers 1∈D x

r

Figure 1: Example of propagator tree for constraint x ∨ y with initial domains of {0, 1}.

3.2. Propagator Trees

The main disadvantage of the näıve method is that it computes and stores
deletions for many subdomain lists that cannot be reached during search. A
second disadvantage is that it must read the entire search state (for variables
in scope) before looking up the deletions. We address both problems by using
a tree to represent the generated propagator. The tree represents only the
subdomain lists that are reachable: no larger subdomain list fails or is entailed.
This improves the average- but not the worst-case complexity.

In this section we introduce the concept of a propagator tree. This is a
rooted binary tree with labels on each node representing actions such as querying
domains and pruning domain values. A propagator tree can straightforwardly
be translated into a program or an executable bytecode. We will describe an
algorithm that generates a propagator tree, given any propagator and entailment
checker for the constraint in question. First we define propagator tree.

Definition 5. A propagator tree node is a tuple T = 〈Left ,Right ,Prune,Test〉,
where Left and Right are propagator tree nodes (or Nil), Prune is a set of
literals to be deleted at this node, and Test is a single literal. Any of the items
in the tuple may be Nil. A propagator tree is a rooted tree of nodes of type T .
The root node is named r. We use dot to access members of a tree node v, so
for example the left subtree is v.Left .

Example 1. Suppose we have the constraint x∨y with initial domains of {0, 1}.
An example propagator tree for this constraint is shown in Figure 1. The tree
first branches to test whether 0 ∈ D(x). In the branch where 0 /∈ D(x), it infers
that 1 ∈ D(x) because otherwise D(x) would be empty. Both subtrees continue
to branch until the domains D(x) and D(y) are completely known. In two cases,
pruning is required (when D(x) = {0} and when D(y) = {0}).
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An execution of a propagator tree follows a path in the tree starting at the
root r. At each vertex v, the propagator prunes the set of literals specified
by v.Prune. If v.Test is Nil, then the propagator is finished. Otherwise, the
propagator tests if the literal v.Test = (xi, a) is in the current subdomain list S.
If a ∈ S(xi), then the next vertex in the path is the left child v.Left , otherwise
it is the right child v.Right . If the relevant child is Nil, then the propagator is
finished.

Example 2. Continuing from Example 1, suppose we have D(x) = {0}, D(y) =
{0, 1}. The dashed arrows in Figure 1 show the execution of the propagator tree,
starting at r. First the value 0 of D(x) is tested, and found to be in the domain.
Second, the value 1 of D(x) is tested and found to be not in the domain. This
leads to a leaf node where 0 is pruned from D(y). The other value of y is as-
sumed to be in the domain (otherwise the domain is empty and the solver will
fail and backtrack).

3.3. Comparing Propagator Trees to Handwritten Propagators

Handwritten propagators make use of many techniques for efficiency. For
example they often have state variables that are incrementally updated and
stored between calls to the propagator. They also make extensive use of triggers
– notifications from the solver about how domains have changed since the last
call (for example, literal 〈x, a〉 has been pruned).

In contrast, propagator trees are stateless. They also do not use triggers. It
is not clear how triggers could be used with a single tree because the order that
trigger events arrive has no relation to the order of branching in the tree. In
future work we plan to create multiple propagator trees which will be executed
for different trigger events, dividing responsibility for achieving GAC among the
trees.

3.4. Generating Propagator Trees

SimpleGenTree (Algorithm 1) is our simplest algorithm to create a prop-
agator tree given a constraint c and the initial domains D. The algorithm is
recursive and builds the tree in depth-first left-first order. When constructed,
each node in a propagator tree will test values to obtain more information about
S, the current subdomain list (Definition 2). At a given tree node, each literal
from the initial domains D may be in S, or out, or unknown (not yet tested).
SimpleGenTree has a subdomain list SD for each tree node, representing values
that are in S or unknown. It also has a second subdomain list ValsIn, represent-
ing values that are known to be in S. Algorithm 1 is called as SimpleGenTree(c,
D, ∅), where c is the parameter of the Propagate function (called on line 1) and
D is the initial domains. For all our experiments, Propagate is a positive GAC
table propagator and thus c is a list of satisfying tuples.

SimpleGenTree proceeds in two stages. First, it runs a propagation algo-
rithm on SD to compute the prunings required given current knowledge of S.
This set of prunings is conservative in the sense that they can be performed
whatever the true value of S because S ⊆ SD . The prunings are stored in the
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Algorithm 1 SimpleGenTree(c, SD, ValsIn)

1: Deletions ← Propagate(c, SD)
2: SD′ ← SD \Deletions
3: if all domains in SD′ are empty then
4: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
5: ValsIn∗ ← ValsIn \Deletions
6: ValsIn′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
7: if SD′ = ValsIn′ then
8: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
{Pick a variable and value, and branch}

9: (y, l)← heuristic(SD′ \ValsIn′)
10: LeftT←SimpleGenTree(c, SD′, ValsIn′ ∪ (y, l))
11: RightT←SimpleGenTree(c, SD′ \ {(y, l)}, ValsIn′)

12: return T = 〈Prune = Deletions,Test = (y, l),Left = LeftT,Right = RightT〉

current tree node, and each pruned value is removed from SD to form SD ′. If
a domain is empty in SD ′, the algorithm returns. Pruned values are also re-
moved from ValsIn to form ValsIn ′ — these values are known to be in S, but
the propagator tree will remove them from S. Furthermore, if only one value
remains for some variable in SD ′, the value is added to ValsIn ′ (otherwise the
domain would be empty).

Propagate is assumed to empty all variable domains if the constraint is
not satisfiable with the subdomain list SD. A GAC propagator (according
to Definition 4) will do this, however Propagate does not necessarily enforce
GAC. The proof of correctness below is simplified by assuming Propagate always
enforces GAC.

Throughout this paper we will only consider GAC propagators according
to Definition 4. If the Propagate function does not enforce GAC then the
propagator tree that is generated does not necessarily enforce the same degree
of consistency as Propagate. Characterising non-GAC propagator trees is not
straightforward and we leave an investigation of this to future work.

The second stage is to choose a literal and branch. This literal is unknown,
i.e. in SD ′ but not ValsIn ′. SimpleGenTree recurses for both left and right
branches. On the left branch, the chosen literal is added to ValsIn, because it
is known to be present in S. On the right, the chosen literal is removed from
SD. There are two conditions that terminate the recursion. In both cases the
algorithm attaches the deletions to the current node and returns. The first
condition is that all domains have been emptied by propagation. The second
condition is SD′ = ValsIn ′. At this point, we have complete knowledge of the
current search state S: SD′ = ValsIn ′ = S.

3.5. Executing a Propagator Tree

We compare two approaches to executing propagator trees. The first is to
translate the tree into program code and compile it into the solver. This results
in a very fast propagator but places limitations on the size of the tree. The
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Algorithm 2 GenCode(Propagator tree T , Vertex v)
1: if v = Nil then
2: WriteToCode(“NoOperation;”)
3: else
4: WriteToCode(“RemoveValuesFromDomains(”+v.Prune+“);”)
5: if v.Test 6= Nil then
6: (xi, a)← v.Test
7: WriteToCode(“if IsInDomain(”+a+“,”+xi+“) then”)
8: GenCode(T ,v.Left)
9: WriteToCode(“else”)

10: GenCode(T ,v.Right)
11: WriteToCode(“endif;”)

second approach is to encode the propagator tree into a stream of instructions,
and execute them using a simple virtual machine.

3.5.1. Code Generation

Algorithm 2 (GenCode) generates a program from a propagator tree via a
depth-first, left-first tree traversal. It is called initially with the root r. GenCode
creates the body of the propagator function, the remainder is solver specific.
In the case of Minion solver specific code is very short and the same for all
propagator trees.

3.5.2. Virtual Machine

The propagator tree is encoded into an array of integers. Each instruction
is encoded as a unique integer followed by some operands. The virtual machine
has only three instructions, as follows.

Branch : 〈var, val, pos〉 - If the value val is not in the domain of the variable var
then jump to position pos. Otherwise, execution continues with the next
instruction in the sequence. A jump to -1 ends execution of the virtual
machine.

Prune : 〈var1, val1, var2, val2, . . . ,−1〉 - Prune a set of literals from the variable
domains. The operands are a list of variable-value pairs terminated by -1.

Return : 〈〉 - End execution of the virtual machine.

Tree nodes are encoded in depth-first left-first order, and execution of the
instruction stream starts at location 0. Any node that has a left child is imme-
diately followed by its left child. The Branch instruction will either continue at
the next instruction (the left child) or jump to the location of the right child.
When an internal node is encoded, the position of its right child is not yet
known. We insert placeholders for pos in the branch instruction and fill them
in during a second pass.

The VM clearly has the advantage that no compilation is required, however
it is somewhat slower than the code generation approach in our experiments
below.

9



3.6. Correctness

In order to prove the SimpleGenTree algorithm correct, we assume that the
Propagate function called on line 1 enforces GAC exactly as in Definition 3. In
particular, if Propagate produces a domain wipe-out, it must delete all values of
all variables in the scope. This is not necessarily the case for GAC propagators
commonly used in solvers. We also assume that the target constraint solver
removes all values of all variables in a constraint if our propagator tree empties
any individual domain. In practice, constraint solvers often have some shortcut
method, such as a special function Fail for these situations, but our proofs are
slightly cleaner for assuming domains are emptied. Finally we implicitly match
up nodes in the generated trees with corresponding points in the generated code
for the propagator. Given these assumptions, we will prove that the code we
generate does indeed establish GAC.

Lemma 1. Assuming that the Propagate function in line 1 establishes GAC,
then: given inputs (c, SD,ValsIn), if Algorithm 1 returns at line 4 or line 8, the
resulting set of prunings achieve GAC for the constraint c on any search state
S such that ValsIn ⊆ S ⊆ SD.

Proof. If Algorithm 1 returns on either line 4 or line 8, the set of deletions re-
turned are those generated on line 1. These deletions achieve GAC propagation
for the search state SD.

If the GAC propagator for c would remove a literal from SD, then that literal
is in no assignment which satisfies c and is contained in SD. As S is contained
in SD, that literal must also be in no assignment that satisfies c and is contained
in S. Therefore any literals in S that are removed by a GAC propagator for
SD would also be removed by a GAC propagator for S.

We now show no extra literals would be removed by a GAC propagator for
S. This is separated into two cases. The first case is if Algorithm 1 returns on
line 4. Then GAC propagation on SD has removed all values from all domains.
There are therefore no further values which can be removed, so the result follows
trivially.

The second case is if Algorithm 1 returns on line 8. Then SD′ = ValsIn ′

on line 7. Any literals added to ValsIn ′ on line 6 are also in S, as literals are
added when exactly one value exists in the domain of a variable in SD, and so
this value must also be in S, otherwise there would be an empty domain in S.
Thus we have ValsIn′ ⊆ (S \ Deletions) ⊆ SD′. But since ValsIn ′ = SD′, we
also have SD′ = S \ Deletions. Since we know SD′ is GAC by the assumed
correctness of the Propagate function, so is S \Deletions. �

Theorem 1. Assuming that the Propagate function in line 1 establishes GAC,
then: given inputs (c, SD,ValsIn), then the code generator Algorithm 2 applied
to the result of Algorithm 1 returns a correct GAC propagator for search states
S such that ValsIn ⊆ S ⊆ SD.

Proof. We shall proceed by induction on the size of the tree generated by
Algorithm 1. The base is that the tree contains just a single leaf node, and this
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case is implied by Lemma 1. The rest of the proof is therefore the induction step
that a tree node is correct given both its left and right children (if present) are
correct. For this proof, we implicitly match up nodes generated by Algorithm 1
with points in the code generated by Algorithm 2.

By the same argument used in Lemma 1, the Deletions generated on line 1
can also be removed from S. If applying these deletions to S leads to a domain
wipe-out, then the constraint solver sets S(x) = ∅ for all x ∈ scope(c), and the
propagator has established GAC, no matter what happens in the rest of the
tree.

If no domain wipe-out occurs, we progress to line 9. At this point we know
that ValsIn ′ ⊆ S \Deletions ⊆ SD′. Also, since we passed line 7, we know that
ValsIn ′ 6= SD′, and therefore there is at least one literal for the heuristic to
choose. There are now two cases. The literal (y, l) chosen by the heuristic is in
S, or not.

If l ∈ S(y), then the generated propagator will branch left. The prop-
agator generated after this branch is generated from the tree produced by
SimpleGenTree(c, SD′,ValsIn ′∪(y, l)). Since l ∈ S(y), we have ValsIn ′∪(y, l) ⊆
S \Deletions ⊆ SD′. Since the tree on the left is strictly smaller, we can appeal
to the induction hypothesis that we have generated a correct GAC propagator
for S \Deletions. Since we know that Deletions were correctly deleted from S,
we have a correct GAC propagator at this node for S.

If l 6∈ S(y), the generated propagator branches right. The propagator on the
right is generated from the tree given by SimpleGenTree(c, SD′ \ (y, l),ValsIn ′)
on S \ Deletions. Here we have ValsIn ′ ⊆ S \ Deletions ⊆ SD′ \ (y, l). As in
the previous case, the requirements of the induction hypothesis are met and we
have a correct GAC propagator for S.

Finally we note that the set SD \ ValsIn is always reduced by at least one
literal on each recursive call to Algorithm 1. Therefore we know the algorithm
will eventually terminate. �

Corollary 1. Assuming the Propagate function correctly establishes GAC for
any constraint c, then the code generator Algorithm 2 applied to the result of Al-
gorithm 1 with inputs (c,D, ∅), where D are the initial domains of the variables
in c, generates a correct GAC propagator for all search states.

Lemma 2. If r is the time a solver needs to remove a value from a domain,
and s the time to check whether or not a value is in the domain of a variable,
the code generated by Algorithm 2 runs in time O(ndmax(r, s)).

Proof. The execution of the algorithm is to go through a single branch of an
if/then/else tree. The tree cannot be of depth greater than nd since one literal
is chosen at each depth and there are at most nd literals in total. Furthermore,
on one branch any given literal can either be removed from a domain or checked,
but not both. This is because Algorithm 1 never chooses a test from a removed
value. Therefore the worst case is nd occurrences of whichever is more expensive
out of testing domain membership and removing a value from a domain. �
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Algorithm 3 Generate propagator tree: GenTree(c, SD, ValsIn)

1: if entailed(c, SD) then
2: return Nil
3: Deletions ← Propagate(c, SD)
4: SD′ = SD \Deletions
5: if all domains in SD′ are empty then
6: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
7: ValsIn∗ ← ValsIn \Deletions
8: ValsIn′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
9: if SD′ = ValsIn′ or entailed(c, SD′) then

10: if Deletions=∅ then
11: return Nil
12: else
13: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
{Pick a variable and value, and branch}

14: (y, l)← heuristic(SD′ \ValsIn′)
15: LeftT←GenTree(c, SD′, ValsIn′ ∪ (y, l))
16: RightT←GenTree(c, SD′ \ {(y, l)}, ValsIn′)
17: if LeftT=Nil And RightT=Nil And Deletions=∅ then
18: return Nil
19: else
20: return T = 〈Prune = Deletions,Test = (y, l),Left = LeftT,Right = RightT〉

In some solvers both r and s are O(1), e.g. where domains are stored only in
bitarrays. In such solvers our generated GAC propagator is O(nd).

4. Generating Smaller Trees

Algorithm 3 shows the GenTree algorithm. This is a refinement of Simple-
GenTree. We present this without proof of correctness, but a proof would be
straightforward since the effect is only to remove nodes in the tree for which no
propagation can occur in the node and the subtree beneath it.

The first efficiency measure is that GenTree always returns Nil when no
pruning is performed at the current node and both children are Nil, thus every
leaf node of the generated propagator tree performs some pruning. The second
measure is to use an entailment checker. A constraint is entailed with respect to
a subdomain list SD if every tuple allowed on SD is allowed by the constraint.
When a constraint is entailed there is no possibility of further pruning. We
assume we have a function entailed(c, SD) to check this. The function is called
at the start of GenTree, and also after the subdomain list is updated by pruning
(line 9). In both cases, entailment leads to the function returning before making
the recursive calls.

To illustrate the difference between SimpleGenTree and GenTree, consider
Figure 2. The constraint is very small (x ∨ y on boolean variables, the same
constraint as used in Figure 1) but even so SimpleGenTree generates 7 more
nodes than GenTree. The figure illustrates the effectiveness and limitations
of entailment checking. Subtree C contains no prunings, therefore it would
be removed by GenTree with or without entailment checking. However, the
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0∈D  x 0∉D x 

1∉D  x1∈D  x 

Prune 0∈D y
 Infers 1∈D y 

0∈D  y  0∉D  y 

 Infers 1∈D y 

1∈D  y 1∉D y 

Prune 0∈D x 

0∈D y  0∉D  y 

 Infers 1∈D y 

1∈D  y 1∉D y 

 Infers 1∈D x

Subtree C – entailedSubtree B – entailed

Subtree A – 
not entailed

Figure 2: Example of propagator tree for constraint x ∨ y with initial domains of {0,1}. The
entire tree is generated by SimpleGenTree (Algorithm 1). The more sophisticated algorithm
GenTree (Algorithm 3) does not generate the subtrees A, B and C.

entailment check is performed at the topmost node in subtree C, and GenTree
immediately returns (line 2) without exploring the four nodes beneath. Subtree
B is entailed, but the entailment check does not reduce the number of nodes
explored by GenTree compared to SimpleGenTree. Subtree A is not entailed,
however GAC does no prunings here so GenTree will explore this subtree but
not output it.

4.1. Bounds on Tree Size

At each internal node, the tree branches for some literal in SD′ that is not
in ValsIn ′. Each unique literal may be branched on at most once down any path
from the root to a leaf node. This means the number of bifurcations is at most nd
down any path. Therefore the size of the tree is at most 2×(2nd)−1 = 2nd+1−1
which is O(2nd).

The dominating cost of GenTree for each node is calling the constraint prop-
agator on line 3. We use GAC2001, and its time complexity is O(n2dn) [3]. De-
tecting entailment is less expensive. To implement entailment and the heuristic,
we maintain a list of all tuples within SD that do not satisfy the constraint. It
takes O(ndn) to filter this list at each node, and the constraint is entailed when
the list is empty. Overall the time complexity of GenTree is O(n2dn × 2nd).

For many constraints GenTree is very efficient and does not approach its
upper bound. The lemma below gives an example of a constraint where GenTree
does generate a tree of exponential size.

Lemma 3. Consider the parity constraint on a list of variables 〈x1, . . . , xn〉
with domain {0, 1}. The constraint is satisfied when the sum of the variables is
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even. Any propagator tree for this constraint must have at least 2n−1 nodes.

Proof. The parity constraint propagates in exactly one case. When all but
one variable is assigned, the remaining variable must be assigned such that the
parity constraint is true. If there are two or more unassigned variables, then no
propagation can be performed.

Suppose we select the first n − 1 variables and assign them in any way
(naming the assignment A), leaving xn unassigned. xn must then be assigned
either 0 or 1 by pruning, and the value depends on every other variable (and on
every other variable being known to be assigned). The tree node that performs
the pruning for A cannot be reached for any other assignment B 6= A to the
first n − 1 variables, as the node for A requires knowing the whole of A to be
able to prune xn. Therefore there must be a distinct node in the propagator
tree for each of the 2n−1 assignments to the first n− 1 variables. �

4.2. Heuristic
The choice of literal to branch on is very important, and can make a huge

difference in the size of the propagator tree. In this section we propose some
dynamic heuristics and compare them.

Entailment Heuristic

To minimise the size of the tree, the aim of this heuristic is to cause Al-
gorithm 3 to return before branching. There are a number of conditions that
cause this: entailment (lines 1 and 9); domain wipe-out (line 6); and complete
domain information (line 9).

The proposed heuristic greedily attempts to make the constraint entailed.
This is done by selecting the literal contained in the greatest number of disal-
lowed tuples of c that are valid with respect to SD′. If this literal is invalid
(as in the right subtree beneath the current node), then the greatest possible
number of disallowed tuples will be removed from the set.

Smallest Domain Heuristics

Smallest Domain First (SDF) is a popular variable ordering heuristic for CP
search. We investigate two ways of adapting SDF. The first, Smallest Maybe
First (SMF) selects a variable with the smallest non-zero number of literals in
SD′\ValsIn ′. SMF will tend to prefer variables with small initial domains, then
prefer to obtain complete domain information for one variable before moving
on to the next. Preferring small domains could be a good choice because on
average each deleted value from a small domain will be in a large number of
satisfying tuples. Ties are broken by the static order of the variables in the
scope. Once a variable is chosen, the smallest literal for that variable is chosen
from SD′ \ValsIn ′.

The second adaptation is Smallest Maybe+Domain First (SM+DF). This is
similar to SMF with two changes: when selecting the variable SD′ is used in
place of SD′ \ ValsIn ′, and variables are chosen from the set of variables that
have at least one literal in SD′ \ ValsIn ′ (otherwise SM+DF could choose a
variable with no remaining literals to branch on).
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Entail AntiEnt Static LMF SMF SM+DF Random
LABS 2 396 473 372 469 372 372 488
LABS 2 SR 62 155 60 161 60 60 265
LABS 3 4,728 8,284 4,316 7,207 4,316 4,316 7,780
LABS 3 SR 171 764 166 828 166 166 2,658
LABS 4 52,004 154,619 47,092 114,665 47,092 47,092 124,381
LABS 4 SR 398 4,139 390 3,697 390 390 25,550
LABS 5 SR 747 16,613 736 14,373 736 736 209,970
LABS 6 SR 1,287 62,172 1,336 49,767 1,336 1,336 > 24h
Life 28,351 11,057 26,524 12,061 26,524 26,524 24,904
Life SR 740 683 410 476 410 410 7,682
Brian SR 185,252 111,443 132,668 106,267 135,575 135,575 > 24h
Immig SR 121,070 39,977 34,717 59,839 34,712 34,712 > 24h
PegSol 316 191 315 161 315 315 222
PegSol SR 95 83 94 66 94 94 160

Table 1: Size of propagator tree for proposed heuristics and anti-heuristics. Figures for the
Random heuristic are a mean of ten trees, each other tree was generated once. Where it
took longer than 24 hours to generate a single tree, the entry reads > 24h. SR denotes
symmetry-reduced trees.

Comparison

We compare the three proposed heuristics Entail, SMF and SM+DF against
corresponding anti-heuristics AntiEntail and LMF (Largest Maybe First), one
static ordering, and a dynamic random ordering (at each node a literal is chosen
at random with uniform probability). We used all the constraints from both
sets of experiments (in Sections 5 and 8).

The static ordering for Peg Solitaire and LABS is the order the constraints
are written in Sections 5.2 and 5.3 respectively. For Life, Immigration and
Brian’s Brain, the neighbour variables are branched first, then the variable
representing the current time-step, then the next time-step.

Table 1 shows the size of propagator trees for each of the heuristics. Static,
SMF and SM+DF performed well overall. SMF and SM+DF produced trees
of identical size. In two cases (Brian Sym and Immigration Sym) the tree
generated with the static ordering is slightly larger than SMF. In most cases
SMF performed better than its anti-heuristic LMF. SMF also has the advantage
that the user need not provide an ordering.

Comparing the Entailment heuristic to Random shows that Entailment does
have some value, but Entailment proved to be worse than SMF and Static in
most cases. Also, Entailment is beaten by its anti-heuristic in 6 cases as opposed
to 4 for SMF.

We use the SMF heuristic for all experiments in Sections 5 and 8.

4.3. Implementation of GenTree

The implementation of Algorithm 3 is recursive and very closely follows the
structure of the pseudocode. It is instantiated with the GAC2001 table prop-
agator [3]. The implementation maintains a list of disallowed tuples of c that
are valid with respect to SD (or SD′ after line 4). This list is used by the
entailment checker: when the list becomes empty, the constraint is entailed. It
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GenTree Compiler
LABS 0.32 20.89
Life 8.26 4, 054.17
Peg Solitaire 0.37 21.58

Table 2: Time taken to generate the propagator trees in Python and the C++ compiler.

is also used to calculate the entailment heuristic described above. It is imple-
mented in Python and is not highly optimised. It is executed using the PyPy
JIT compiler2 version 1.9.0.

5. Experimental Evaluation of Propagator Trees

In all the case studies below, we use the solver Minion [16] 0.15. We exper-
iment with 3 propagator trees, in each case comparing against hand-optimised
propagators provided in Minion, and also against generic GAC propagators (as
described in the subsection below). All instances were run 5 times and the mean
was taken. In all cases times are given for an 8-core Intel Xeon E5520 at 2.27
GHz with 12 GB RAM. Minion was compiled with g++ 4.7.3, optimisation level
-O3. For all experiments 6 Minion processes were executed in parallel. We ran
all experiments with a 24 hour timeout, except where otherwise stated.

Table 2 reports the time taken to run GenTree, and separately to compile
each propagator and link it to Minion. The propagator trees are compiled
exactly as every other constraint in Minion is compiled. Specifically they are
compiled once for each variable type, 7 times in total. In the case of Life, in our
previous work [15] we compiled the propagator tree once (for Boolean variables),
taking 217s, whereas here it takes 4,054.17s. In each experiment in this section,
we build exactly one propagator tree, which is then used for all instances in that
experiment, and on multiple scopes for each instance.

5.1. Generic GAC Propagators

In some cases a generic GAC propagator can enforce GAC in polynomial
time. Typically this occurs if the size of the data structure representing the
constraint is bounded by a polynomial. Generic propagators can also perform
well when there is no polynomial time bound simply because they have been
the focus of much research effort.

We compare propagator trees to three table constraints: Table, Lighttable,
and STR2+. Table uses a trie data structure with watched literals [7]. Light-
table employs the same trie data structure but is stateless and uses static trig-
gers. Lighttable searches for support for each value of every variable each time it

2In our previous paper [15] we used the standard Python interpreter therefore timings are
different.
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is called. Finally STR2+ is the optimised simple tabular reduction propagator
by Lecoutre [6].

We also compare against MDDC, the MDD propagator of Cheng and Yap [5].
The MDD is constructed from the set of satisfying tuples. The MDDC propa-
gator is implemented exactly as described by Cheng and Yap, and we used the
sparse set variant. To construct the MDD, we used a simpler algorithm than
Cheng and Yap. Our implementation first builds a complete trie representing
the positive tuples, then converts the trie to an MDD by compressing identical
subtrees.

Many of our benchmark constraints can be represented compactly using a
Regular constraint [8]. We manually created deterministic finite automata for
these constraints. These automata are given elsewhere [17] for space reasons. In
the experiments we use the Regular decomposition of Beldiceanu et al. [18] which
has a sequence of auxiliary variables representing the state of the automaton at
each step, and a set of ternary table constraints each representing the transition
table. We enforce GAC on the table constraints and this obtains GAC on the
original Regular constraint.

5.2. Case Study: English Peg Solitaire

English Peg Solitaire is a one-player game played with pegs on a board. It
is Problem 37 at www.csplib.org. The game and a model are described by
Jefferson et al. [2]. The game has 33 board positions (fields), and begins with
32 pegs and one hole. The aim is to reduce the number of pegs to 1. At each
move, a peg (A) is jumped over another peg (B) and into a hole, and B is
removed. As each move removes one peg, we fix the number of time steps in
our model to 32.

The model we use is as follows. The board is represented by a Boolean
array b[32, 33] where the first index is the time step {0 . . . 31} and the second
index is the field {1 . . . 33}. The moves are represented by Boolean variables
moves[31, 76], where the first index is the time step {0 . . . 30} (where move 0
connects board states 0 and 1), and the second index is the move number, where
there are 76 possible moves. The third set of Boolean variables are equal [31, 33],
where the first index is the time step {0 . . . 30} and the second is the field. The
following constraint is posted for each equal variable: equal [x, y] ⇔ (b[x, y] =
b[x + 1, y]). The board state for the first and last time step are filled in, with
one hole at the starting position, and one peg at the same position in the final
time step. We consider only starting positions 1, 2, 4, 5, 9, 10, or 17, because
all other positions can be reached by symmetry from one of these seven.

For each time step t ∈ {0 . . . 30}, exactly one move must be made, therefore
constraints are posted to enforce

∑
i moves[t, i] = 1. Also for each time step t,

the number of pegs on the board is 32 − t, therefore constraints are posted to
enforce

∑33
i=1 b[t, i] = 32− t.

The bulk of the constraints model the moves. At each time step t ∈
{0 . . . 30}, for each possible move m ∈ {0 . . . 75}, the effects of move m are
represented by an arity 7 Boolean constraint. Move m jumps a piece from field
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Starting Node rate (per s) Nodes
position Propagator Tree Min Reified

Compiled VM Sumgeq
1 9,046 6,663 7,445 3,953 —
2 5,624 4,423 4,714 3,329 10,268
4 8,634 6,556 7,064 4,007 —
5 8,684 6,834 7,565 4,318 —
9 8,827 6,536 6,990 4,114 —
10 10,076 7,727 7,921 4,694 1,486,641
17 6,470 4,797 4,702 3,502 10,269

Starting Node rate (per s)
position Lighttable Table MDDC Regular STR2+

1 755 1,992 1,902 326 1,373
2 715 1,657 1,697 301 1,281
4 672 2,067 1,597 304 1,269
5 754 2,206 1,749 345 1,385
9 735 1,738 1,682 297 1,290
10 719 1,931 1,848 312 1,437
17 701 1,827 1,686 303 1,206

Table 3: Results on peg solitaire problems.

f1 to f3 over field f2. The constraint is as follows.

(b[t, f1]∧¬b[t+1, f1]∧b[t, f2]∧¬b[t+1, f2]∧¬b[t, f3]∧b[t+1, f3])⇔ moves[t,m]

Also, a frame constraint is posted to ensure that all fields other than f1, f2
and f3 remain the same. The constraint states (for all relevant fields f4) that
equal [t, f4] = 1 when moves[t,m] = 1.

In this experiment, the arity 7 move constraint is implemented in nine dif-
ferent ways, and all other constraints are invariant. First the move constraint
is implemented as a propagator tree (compiled or using the VM). As shown in
Table 2, the propagator tree was generated by GenTree in 0.37s and compiled
in 21.58s. The tree has 315 nodes, and GenTree explored 509 nodes.

The Reified Sumgeq implementation uses a sum to represent the conjunction.
The negation of some b variables is achieved with views [19], therefore no aux-
iliary variables are introduced. The sum constraint is reified to the moves[t,m]
variable, as follows: [(b[t, f1] + · · ·+ b[t + 1, f3]) ≥ 6]⇔ moves[t,m].

The Min implementation uses a single min constraint. Again views are used
for negation and no auxiliary variables are introduced. The constraint is as
follows: min(b[t, f1], . . . , b[t + 1, f3]) = moves[t,m].

The move constraint is also implemented using the Lighttable, Table, MDDC
and STR2+ propagators. The table has 64 satisfying tuples. The Regular im-
plementation [17] has 9 states and uses a ternary table constraint (representing
the transition table) with 17 satisfying tuples.

Table 3 shows our results for peg solitaire. All nine methods enforce GAC,
therefore they search exactly the same space. When one or more methods
completed the search within the 24 hour timeout, we give the node count. The
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compiled propagator tree outperforms Min by a substantial margin, which is per-
haps remarkable given that Min is a hand-optimised propagator. The compiled
propagator tree outperforms Reified Sumgeq by an even wider margin. None of
the generic GAC methods Lighttable, Table, MDDC, Regular or STR2+ come
close to the handwritten propagators or the propagator tree. For the harder
instances, the compiled propagator tree more than repays the overhead of its
generation and compilation compared to Min. For example instance 10 was
solved in 187 seconds by the Min implementation and 147 seconds (169 seconds
when including the cost of building the propagator tree) with propagator trees.

5.3. Case Study: Low Autocorrelation Binary Sequences

The Low Autocorrelation Binary Sequence (LABS) problem is described by
Gent and Smith [20]. The problem is to find a sequence s of length n of symbols
{−1, 1}. For each interval k ∈ {1 . . . n − 1}, the correlation Ck is the sum of
the products s[i] × s[i + k] for all i ∈ {0 . . . n − k − 1}. The overall correlation

Cmin is the sum of the squares of all Ck: Cmin =
∑n−1

k=1(Ck)2. Cmin must be
minimised.

The sequence is modelled directly, using variables s[n] ∈ {−1, 1}. For each
k ∈ {1 . . . n− 1}, and each i ∈ {0 . . . n− k− 1}, we have a variable pik ∈ {−1, 1}
and the product constraint pik = s[i] × s[i + k]. For each k ∈ {1 . . . n − 1} we
have a variable Ck ∈ {−n . . . n}. Ck is constrained to be the sum of pik for all
i. There are also variables C2

k ∈ {0 . . . n2}, and a binary lighttable constraint

is used to link Ck and C2
k . Finally we have Cmin =

∑n−1
k=1 C

2
k , and Cmin is

minimised. Gent and Smith identified 7 symmetric images of the sequence
[20]. For each symmetric image we post one lexleq (lexicographic ordering)
constraint to break the symmetry. Gent and Smith also proposed a variable
and value ordering that we use here.

There are more ternary product constraints than any other constraint in
LABS. Ck is a sum of products: Ck = (s[0]× s[k]) + (s[1]× s[k + 1]) + · · · . To
test propagator trees on this problem, we combine pairs of product constraints
into a single arity 5 constraint: (s[i]× s[k + i]) + (s[i + 1]× s[k + i + 1]) = pik.
This allows almost half of the pik variables to be removed. When there are an
odd number of products, one of the original product constraints is retained for
the largest value of i.

We compare eight models of LABS: Product, the model with ternary product
constraints; Propagator tree, where the new 5-ary constraint has a propagator
tree, and this is either compiled or executed in the VM; Table, Lighttable, MDDC
and STR2+ where the 5-ary constraint is implemented with a generic propa-
gator using a table with 16 satisfying tuples; and Regular [17] which has 10
states and uses a ternary table constraint (representing the transition table)
with 17 satisfying tuples. All models except Product enforce GAC on the 5-ary
constraint. All other constraints are the same for all eight models.

As shown in Table 2, the propagator tree was generated by GenTree in 0.32s.
The algorithm explored 621 nodes and the tree has 372 nodes. It was compiled
in 20.89s.
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n Time (s)
Propagator tree Product Light- Table MDDC Reglr STR2+

Compiled VM table
25 9.22 10.03 11.57 22.42 20.06 18.49 47.13 14.00
26 18.85 20.46 21.95 42.00 44.45 41.88 103.49 28.88
27 42.21 40.88 49.72 87.68 84.53 92.12 233.94 59.81
28 81.44 82.29 95.62 196.64 173.16 167.16 437.02 114.85
29 131.40 136.42 170.72 317.48 283.93 291.70 701.04 220.60
30 237.06 239.63 276.64 539.49 502.08 535.10 1,199.77 348.53

n Search nodes Node rate (per s)
All GAC Product Propagator tree Product
methods Compiled VM

25 206,010 350,119 22,344 20,541 30,260
26 404,879 709,228 21,481 19,788 32,309
27 790,497 1,343,545 18,726 19,335 27,022
28 1,574,100 2,684,883 19,328 19,129 28,077
29 2,553,956 4,441,023 19,437 18,722 26,014
30 4,120,335 7,118,749 17,381 17,194 25,733

Table 4: Results on LABS problems of size 25-30. All times are a mean of 5 runs.

Table 4 shows our results for LABS sizes 25 to 30. The instances were
solved to optimality. The Propagator Tree, Table, Lighttable, MDDC, Regular
and STR2+ models search the same number of nodes as each other, and exhibit
stronger propagation than Product, but their node rate is lower than Product
in all cases. The generic GAC propagator (and Regular decomposition) models
are slower than Product. However, both propagator tree variants are faster
than Product, and for the larger instances it more than repays the overhead of
compiling the specialised constraint.

The virtual machine also performs better than might be expected, almost
matching the speed of the compiled propagator tree while saving the compilation
time.

5.4. Case Study: Maximum Density Oscillating Life

Conway’s Game of Life was invented by John Horton Conway. The game is
played on a square grid. Each cell in the grid is in one of two states (alive or
dead). The state of the board evolves over time: for each cell, its new state is
determined by its previous state and the previous state of its eight neighbours
(including diagonal neighbours). Oscillators are patterns that return to their
original state after a number of steps (referred to as the period). A period 1
oscillator is named a still life.

Various problems in Life have been modelled in constraints. Bosch and
Trick considered period 2 oscillators and still lifes [21]. Smith [22] and Chu et
al. [23] considered the maximum-density still life problem. Here we consider
the problem of finding oscillators of various periods. We use simple models
for the purpose of evaluating the propagator generation technique rather than
competing with the sophisticated still-life models in the literature. However, to
our knowledge we present the first model of oscillators of period greater than 2.
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The problem of size n × n (i.e. live cells are contained within an n × n
bounding box at each time step) and period p is represented by a 3-dimensional
array of Boolean variables b[n+ 4, n+ 4, p] indexed (from 0) by position i, j and
time step t. To enforce the bounding box, for each t, the rows 0, 1, n+2 and n+3
are set to 0. Similarly, columns 0, 1, n+2 and n+3 are set to 0. For a cell b[i, j, t]
at time step t, the liveness of its successor b[i, j, (t + 1) mod p] is determined
as follows. The 8 adjacent cells are summed: s =

∑
adjacent(b[i, j, t]), and the

transition rules are as follows:

• (s > 3 ∨ s < 2) ⇒ b[i, j, (t + 1) mod p] = 0;

• (s = 3) ⇒ b[i, j, (t + 1) mod p] = 1; and

• (s = 2) ⇒ b[i, j, (t + 1) mod p] = b[i, j, t].

We refer to the grid at a particular time step as a layer. For each pair of
layers, a watchvecneq (vector not-equal) constraint is used to constrain them
to be distinct. To break some symmetries, the first layer is constrained to be lex
less than all subsequent layers. Also, the first layer may be reflected horizontally
and vertically, and rotated 90 degrees, so it is constrained to be lex less or equal
than each of its 7 symmetric images. To find oscillators of maximum density,
the number of dead cells in the first layer is summed to a variable m which is
then minimised.

The liveness constraint involves 10 Boolean variables. As shown in Table 2,
GenTree takes 8.26s. The algorithm explored 86,685 nodes, and the resulting
propagator tree has 26,524 nodes. Compilation took 4,054.17s.

The propagator tree is compared to six other implementations. The Sum
implementation adds an auxiliary variable s[i, j, t] ∈ 0 . . . 8 for each b[i, j, t], and
the sum constraint s[i, j, t] =

∑
adjacent(b[i, j, t− 1]). s[i, j, t], b[i, j, t− 1] and

b[i, j, t] are linked by a ternary table (lighttable) constraint encoding the live-
ness rules. The Table, Lighttable, MDDC and STR2+ implementations simply
encode the arity 10 constraint using a table with 512 satisfying tuples. The
Regular implementation [17] has 18 states and uses a ternary table constraint
(representing the transition table) with 35 satisfying tuples.

We used instances with parameters n ∈ {5, 6, 7} and period p ∈ {2, 3, 4, 5, 6}.
Results are shown in Tables 5 and 6. All five generic GAC methods are shown
in Table 6 and Table 5 includes only the best generic GAC method (MDDC).
In 13 cases, the instances timed out after 24 hours, but otherwise they were
solved to optimality. All models explored the same number of nodes in all cases
(node counts are slightly different to those we reported previously [15] because
a different optimisation function was used).

The propagator tree is substantially faster than the sum implementation.
For instance n = 7 p = 5, Compiled is 5.3 times faster than Sum. Also, Sum is
consistently faster than MDDC. For the six hardest instances that were solved
(n = 6, p ∈ {4, 5, 6}, and n = 7, p ∈ {3, 4, 5}), the VM more than paid back
its 8.26s overhead compared to Sum. For the most difficult solved instance
(n = 7, p = 5) the compiled propagator tree more than paid back its overhead
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n p Time (s) Nodes
Propagator tree Sum MDDC

Compiled VM
5 2 0.02 0.04 0.08 0.18 1,166
5 3 0.11 0.17 0.39 0.66 5,489
5 4 0.53 0.71 2.36 3.43 21,906
5 5 1.47 2.38 6.80 12.99 49,704
5 6 3.08 4.46 13.79 17.82 71,809
6 2 0.17 0.28 0.68 1.09 13,564
6 3 1.20 1.85 5.76 10.46 88,655
6 4 14.90 23.66 78.30 119.11 837,541
6 5 189.48 266.26 934.89 1,413.19 6,172,319
6 6 618.86 1,139.67 3,269.44 5,334.13 16,538,570
7 2 2.46 3.68 11.43 17.01 260,787
7 3 22.14 39.90 128.77 202.23 1,843,049
7 4 454.26 679.37 2,175.51 4,416.74 28,194,835
7 5 13,376.00 21,314.90 70,910.76 timeout 564,092,290
7 6 timeout timeout timeout timeout —

Table 5: Time to solve to optimality for propagator tree, sum and MDDC implementations
of the Life constraint.

of 4,062s (GenTree plus compilation). Furthermore, note that the propagator
tree is identical in each case: that is the arity 10 constraint is independent of n
and p since it depends only on the rules of the game. Therefore the overhead
can be amortised over this entire set of runs, as well as any future problems
needing this constraint. We can conclude that the propagator tree is the best
choice for this set of instances, and by a very wide margin.

6. Symmetry in Propagator Trees

We have described a technique for generating a propagator which runs in
polynomial time for any constraint, at the cost of exponential pre-processing
time, and exponential space complexity. The pre-processing cost can be amor-
tised over all uses of the constraint, but the space complexity is relevant when-
ever the constraint is used. If this grows larger than the physical memory of the
computer being used the speed of the propagator drops dramatically, so this is
often the limiting factor.

In all three of the case studies above, the constraint has symmetry. For
example, in Maximum Density Oscillating Life, the eight variables representing
the neighbours of the cell may be permuted freely without changing the seman-
tics of the constraint. There is potential to save both pre-processing time and
reduce the space complexity by merging symmetric subtrees of the propagator
trees.

While the technique of merging identical subtrees to compress a tree is well
known, merging symmetric subtrees is novel to the best of our knowledge, and
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n p Time (s)
Lighttable Table MDDC Regular STR2+

5 2 0.18 0.21 0.18 1.42 0.15
5 3 1.17 1.12 0.66 8.82 0.68
5 4 7.03 6.12 3.43 56.87 3.28
5 5 24.28 18.91 12.99 192.83 11.44
5 6 47.18 27.99 17.82 356.05 19.86
6 2 1.99 1.95 1.09 16.07 0.99
6 3 19.70 18.82 10.46 155.44 9.72
6 4 256.49 200.19 119.11 2,018.75 128.54
6 5 2,835.33 2,075.39 1,413.19 22,051.68 1,415.23
6 6 10,668.74 7,500.97 5,334.13 timeout 5,273.69
7 2 34.00 40.08 17.01 264.80 16.23
7 3 448.30 364.75 202.23 2,714.52 217.45
7 4 7,695.24 6,443.26 4,416.74 59,845.68 4,845.00
7 5 timeout timeout timeout timeout timeout
7 6 timeout timeout timeout timeout timeout

Table 6: Time to solve the Life problem to optimality with each generic propagator and the
Regular decomposition.

requires an extension of an existing group-theoretic algorithm [24]. This ex-
tended algorithm is implemented in the GAP computational algebra system
[25].

The use of symmetry can reduce an exponential size propagator tree to
polynomial size when the constraint is highly symmetric. In this section we
present the necessary group theory background and algorithms to be able to
identify symmetric subtrees. In the section that follows we adapt the GenTree
algorithm to generate symmetry-reduced trees.

6.1. Group Theory Background

Generating symmetry-reduced trees requires a number of concepts from
group theory. These are given in brief below. For a more in-depth discussion of
group theory, see [26].

Definition 6. Given a set S, a permutation of S is a bijective function on the
members of S. Given two permutations f and g, (f.g)(x) = g(f(x)). A group
G on S is a set of permutations of S which contains the identity function e
and satisfies the conditions f, g ∈ G → f.g ∈ G and f ∈ G → f−1 ∈ G.
Following traditional group theory notation, we denote the image of s ∈ S
under a permutation g as sg.

For convenience, given a permutation g of S and a set T ⊆ S, we define
T g = {tg | t ∈ T}. Also we define 〈A1, . . . , An〉g = 〈A1

g, . . . , An
g〉.

The h conjugate of a group G, denoted Gh, is the group consisting of the
elements {h−1.g.h | g ∈ G}. The stabiliser of a set S in a group G, denoted
stab(G,S), is the subgroup of G consisting of the members {g ∈ G | Sg = S}.
Stabilisers for other objects are defined in the same way. Stabilisers are always
themselves groups [26].
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To generate symmetry-reduced trees, we need a way of finding if there ex-
ists a permutation which maps one subtree to another. This could be done
by comparing all possible pairs of subtrees, but it is more efficient to use a
canonicalising function, defined in Definition 7.

Definition 7. Given a group G on a set S, a canonicalising function f : T → G
is a function which satisfies the property that for all t1, t2 in T , if there exists g
in G such that t1

g = t2, then the permutations g1 = f(t1) and g2 = f(t2) have
the property that t1

g1 = t2
g2 . The canonical image of t ∈ T is tf(t).

We use the letter T in this definition to represent any set where the appro-
priate operation is defined: permutations g ∈ G can be applied to members of
T . Note that our canonicalising function returns a group element rather than
the image. It is trivial to obtain the image given the group element, but not
vice versa.

Example 3. Consider the group G of all permutations on S = {1, 2, 3, 4, 5}.
Suppose we need a canonicalising function for subsets of S. One such canoni-
calising function f maps a set of size n to the set {1 . . . n}. Suppose we have
sets S1 = {1, 3, 5} and S2 = {1, 4, 5}. f(S1) must map the values {1, 3, 5}
to {1, 2, 3} in some order, and {2, 4} to {4, 5} in some order. One suitable
f(S1) is {1 7→ 3, 2 7→ 5, 3 7→ 1, 4 7→ 4, 5 7→ 2}. Similarly, one suitable
f(S2) is {1 7→ 1, 2 7→ 4, 3 7→ 5, 4 7→ 3, 5 7→ 2}. The important fact is that

S1
f(S1) = S2

f(S2) = {1, 2, 3}.

The reason to use a canonicalising function is that we can store the canon-
ical image of every subtree, and know that there exists a permutation from
one subtree to another within G iff they have the same canonical image. The
canonicalisation function we use is not specific to propagator trees, it acts on a
sequence of objects. It is developed in Appendix A.

6.2. Symmetries of Constraints

The propagator trees created by the algorithm GenTree (Algorithm 3) can
be executed in O(nd) time, where n is the arity of the constraint, and d is the
domain size. However they have the disadvantage that they can have O(2nd)
nodes. In this section we show how to generate symmetry-reduced trees, and
that they can be much more compact than standard propagator trees. In partic-
ular, for some constraints (and associated symmetry groups) the space required
is polynomial in n and d rather than exponential. First we must define symme-
try of both assignments and constraints.

Definition 8. Consider a total assignment A to a set of variables X, and a
permutation g of the literals of X. The image of A under g (denoted Ag)
is defined iff applying g pointwise to A (i.e. applying g to each literal in A
separately) produces another total assignment of X. In this case Ag is defined
as the total assignment generated by the pointwise image of A under g.
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This definition ensures that a total assignment is mapped to another total
assignment, thus for any two literals from A, their images in Ag may not refer
to the same variable.

Definition 9. Consider a constraint c and a permutation g of the literals of
variables in scope(c). cg is defined iff Ag is defined for each assignment A that
satisfies c. In this case, cg is defined as the constraint with the same scope as c
that is satisfied by the set {Ag | A satisfies c}. g is a symmetry of c iff cg = c.
G is a symmetry group of c iff ∀g ∈ G . cg = c.

Cohen et al. [27] surveyed definitions of symmetry for CSP, and gave two
precise definitions, solution symmetry and constraint symmetry. If we define a
CSP containing only one constraint and only the variables in its scope, then our
Definition 9 is identical to solution symmetry, but not identical to constraint
symmetry.

In some cases, our tree generation algorithm will not work correctly with the
whole group G as defined above. To avoid this problem, we allow permutations
g ∈ G that permute variables, and permute values within the domains, but not
that map two literals of the same variable onto two different variables. More
precisely, each g ∈ G must have the following property.

Definition 10. Given constraint c, a permutation g is variable-stable iff, given
two literals 〈x, d1〉, 〈x, d2〉 from the same variable, then g(〈x, d1〉) and g(〈x, d2〉)
are also literals from the same variable.

6.3. Symmetries of Propagator Trees

Examining Algorithm 3, we see that each node of the tree is generated from
3 pieces of information. The constraint being propagated (which is fixed), the
set of literals which are known to be present, called ValsIn, and those literals
that are not known to be deleted, called SD (for subdomain list). Note that
ValsIn ⊆ SD at all times.

Definition 11. The node-state of a tree node S comprises SValsIn and SSD .
The constraint being propagated is implicit. The image of S under permutation
g is Sg where Sg

ValsIn = {〈x, a〉g | 〈x, a〉 ∈ SValsIn}, and Sg
SD = {〈x, a〉g | 〈x, a〉 ∈

SSD}.

To apply a symmetry g ∈ G to a propagator tree we define an image function
in Definition 12.

Definition 12. Given a propagator tree T defined on constraint c and a literal
permutation g ∈ G, then T g is defined recursively as follows:

(Nil)g = Nil

T g = 〈(T.Prune)g, (T.Test)g, (T.Left)g, (T.Right)g〉
The group element g is applied pointwise to Prune and Test, and the image

function is applied recursively to the Left and Right subtrees.
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Theorem 2 shows an important, but very simple, result relating the images of
trees under a permutation. This theorem does not require that the permutation
is a symmetry of the constraint, as it applies the permutation to both the
constraint and the propagator tree. This result is almost self-evident, as it
performs a simple relabelling. However, it is the basis for all the symmetric tree
results we will build.

Theorem 2. Given a propagator tree T generated for a constraint c and node-
state S, and given any variable-stable permutation g, T g is a propagator tree for
constraint cg and node-state Sg.

Proof. The proof of this theorem follows simply from the definition of these
concepts. A variable-stable permutation can be seen as a simple relabelling of
the variable names, and the values in the domain of each variable. As these
labels are unimportant, this simple relabelling has no effect on the correctness
of T g for cg and Sg. �

Corollary 2. Given a propagator tree T generated for a constraint c and node-
state S, and given any variable-stable permutation g which is a symmetry of c,
T g is a propagator tree for constraint c and node-state Sg.

Proof. Follows trivially from Theorem 2, and the fact that cg = c as g is a
symmetry of c. �

Corollary 2 is the basis of our approach. When generating a propagator tree,
if the current node-state S′ is symmetric to some previously seen node-state S,
then instead of generating a propagator tree for S′, we can re-use the propagator
tree built for S.

6.4. Constraint Symmetries and Variable-Stability

All constraints we use in our experiments have only variable-stable sym-
metries. However constraint symmetries that are not variable-stable do occur,
particularly in problems involving allDifferent constraints. Consider the follow-
ing example.

Example 4. Let x1, x2, x3 be variables with domain {1, 2, 3} and let g be the
permutation that maps xi 7→ j to xj 7→ i for all i, j ∈ {1, 2, 3}. The constraint
c =allDifferent(x1, x2, x3) has the symmetry g.

Theorem 2 (the critical proof of this paper) relies on the permutation g
being variable-stable. This raises the question of whether variable stability is
required. Example 5 demonstrates that applying permutations that are not
variable-stable can lead to invalid propagators.

Example 5. Consider the symmetry in Example 4. We will create a GAC
propagator tree for constraint c. Recall that propagator trees are never invoked
on a search state with an empty domain (Definition 4). We construct a propa-
gator tree that first branches for each value of x1. In the case where the domain
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of x1 is empty, the tree performs no deletions and returns (this case will never
be reached). In all other cases the propagator performs GAC.

However, if we applied the symmetry in Example 4 to it, it would branch
on literals x1 7→ 1, x2 7→ 1 and x3 7→ 1 first. Suppose x1, x2 and x3 were
all assigned the value 3, the propagator would perform no deletions and return.
This is clearly incorrect.

To avoid this problem, throughout the rest of this paper we consider only
variable-stable permutations.

7. Generating and Executing Symmetry-Reduced Propagator Trees

We can adapt GenTree (Algorithm 3) to generate symmetry-reduced trees
using the canonicalisation function. Suppose we are part-way through generat-
ing a propagator tree, and we reach a node-state S. Suppose also that S will be
an internal node in the completed tree. We compute the canonical image of S,
and check if any other node-state with an identical canonical image has already
been seen. If not, then we carry on as before. If so, we generate a new type of
node that performs a jump to the previously seen symmetric node-state. Each
jump has a permutation of the literals associated with it.

The other key ingredient is that when a symmetry-reduced tree is executed a
permutation of the literals is maintained. The domains are viewed and pruned
through the lens of this permutation, and it is updated when a jump is per-
formed.

First we give the algorithm for generating the symmetry-reduced trees, then
discuss the symmetry groups that may be used and bounds on the size of the
trees. Following that we discuss efficient execution of symmetry-reduced trees
in Section 7.3.

7.1. Generating symmetry-reduced trees in detail

Recall that the node-state consists of ValsIn and SD (Definition 11). In the
new algorithm, we maintain the following two data structures to track node-
states seen so far.

CanonicalLookup[c] – Hash table indexed by canonical image c, containing a
pair 〈g, id〉 where g ∈ G is a permutation mapping a node-state S to c,
and id is a number that identifies the node where S was seen.

DeletedLookup – Set (implemented as a hash table) containing canonical im-
ages. When a tree node is deleted because it (and the subtree beneath it)
contains no prunings, the canonical image of it is stored in DeletedLookup.

CanonicalLookup contains the canonical image of every node-state seen so
far. Thus it allows us to efficiently check if the current node-state is symmet-
rically equivalent to any previous node-state. Also, it allows us to compute a
permutation from the current node-state to the previous node-state via their
shared canonical image.
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Algorithm 4 GenTreeSym(c, SD, ValsIn)

1: if entailed(c, SD) then
2: return Nil
3: Deletions ← Propagate(c, SD)
4: SD′ = SD \Deletions
5: if all domains in SD′ are empty then
6: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
7: ValsIn∗ ← ValsIn \Deletions
8: ValsIn′ ← ValsIn∗ ∪ {(x, a)|(x, a) ∈ SD′, |SD′(x)| = 1}
9: if SD′ = ValsIn′ or entailed(c, SD′) then

10: if Deletions=∅ then
11: return Nil
12: else
13: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
{Check if a symmetric node-state has already been generated}

14: 〈g,CanImage〉 ← CanSym([SD′,ValsIn′])
15: if CanonicalLookup contains key CanImage then
16: if DeletedLookup contains CanImage then
17: if Deletions 6= ∅ then
18: return T = 〈Prune = Deletions,Test = Nil ,Left = Nil ,Right = Nil〉
19: else
20: return Nil
21: 〈h, id〉 ← CanonicalLookup[CanImage]
22: return T = 〈Prune = Deletions,Perm = g.h−1,Node = id〉

{g.h−1 maps from id to the current node.}
23: else
24: CanonicalLookup[CanImage]← 〈g, getNewUniqueId()〉
{Pick a variable and value, and branch}

25: (y, l)← heuristic(SD′ \ValsIn′)
26: LeftT←GenTreeSym(c, SD′, ValsIn′ ∪ (y, l))
27: RightT←GenTreeSym(c, SD′ \ {(y, l)}, ValsIn′)
28: if LeftT=Nil And RightT=Nil And Deletions=∅ then
29: Add CanImage to DeletedLookup
30: return Nil
31: else
32: return T = 〈Prune = Deletions,Test = (y, l),Left = LeftT,Right = RightT〉

The reason for DeletedLookup is more subtle. When a tree node is deleted
because it contains no prunings (lines 17 and 18 of GenTree) it could be removed
from CanonicalLookup, and this would prevent a jump being inserted to the
deleted node. However, a tree node can only be deleted in this way after the
subtree beneath it has been explored (potentially a time consuming process) and
this work would be repeated if we reached a symmetric node-state in the future.
Therefore we retain the deleted node in CanonicalLookup, and also insert it in
DeletedLookup.

Algorithm 4 (GenTreeSym) is similar in structure to GenTree. Lines 14–24
and 29 have been added, and the function name on lines 26 and 27 has been
changed. Other lines in GenTreeSym are identical to GenTree.

In the new section the first task is to compute the canonical image of the
current node-state. This is done by calling CanSym which encodes the node
state as a sequence of sets of integers, calls CanonicalSetList (Algorithm 7 in
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Appendix A) and returns both the canonicalising permutation g and the canon-
ical image CanImage. CanImage is then looked up in CanonicalLookup. If it
is not present, it is added (line 24) and the algorithm continues as GenTree
would. If the canonical image is in CanonicalLookup, the algorithm branches
for three cases. It makes at most one new node, either containing a jump or
some deletions.

One important point is that we calculate the canonical image after pruning
domains. This means that a node found in CanonicalLookup is only symmetric
after deletions have been applied. Hence, on line 18, the algorithm discovers
that the current node-state is symmetric to a previously deleted node, but the
current node must perform the pruning so it cannot be deleted. Also, on line 22,
the deletions are stored with (and performed before) the permutation and jump.

Figure 3 shows an example of a symmetry-reduced propagator tree created
by GenTreeSym with the entailment heuristic. Figure 4 illustrates the difference
made by symmetry reduction on the LABS 2 constraint.

7.2. Bounds on Tree Size

The sole reason for exploiting symmetry is to reduce the size of the gener-
ated trees. In this section we will show that for a wide range of constraints,
symmetry-reduced trees achieve a polynomial bound in tree size, where stan-
dard propagator trees are exponential. We will consider one class of symmetric
constraints, given in Definition 13.

Definition 13. A partially symmetric constraint defined by the parameters
〈n1, d1, n2, d2〉 is a constraint with n1 +n2 variables, where the first n1 variables
have domain size d1 and the last n2 variables have domain size d2. Further,
the constraint has, for each i, j ∈ {1 . . . n1}, the symmetry that swaps the
assignment to variables i and j, leaving all other variables unchanged.

Of the constraints we consider in our experiments below, all three variants
of Life fit Definition 13, with n1 = 8 and n2 = 2. All the symmetry of Life and
Brian’s Brain is captured in that definition. Peg Solitaire also fits the definition
with n1 = 3. In the experiments we exploit more symmetries, such as permuting
values, that further reduce the tree size. Lemma 4 gives a simple bound on the
number of equivalence classes of node-states a partially symmetric constraint
can have.

Lemma 4. Given a partially symmetric constraint defined by the parameters

〈n1, d1, n2, d2〉, there are O
((

3d2 − d2 − 1
)n2

.(n1 + 1)(
3d1−d1−1)

)
equivalence

classes of node-states (Definition 11).

Proof. A variable with d domain values has 3d states, because there are 3
values a literal can have, either known present, known not present, or unknown.
We discount the state where all values are not present, because we assume the
propagator is never invoked for such domains. Also we discount the d states
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0∈D(z ) 0∉D (z )

0∉D (x )0∈D(x )

1∈D( x) 1∉D( x) 0∈D( y ) 0∉D ( y )

0∈D( y ) 0∉D ( y )

Prune0∈D(z ) Prune 1∈D(z )

1∈D( y) 1∉D( y )

Prune 0∈D (z )

1∉D(z )

Prune0∈D(x )

1∉D(z )

Prune0∈D( y )

Swap x and y

Figure 3: Example of part of a propagator tree for the constraint x ∧ y ⇔ ¬z. The arrow
indicates a jump with the permutation that swaps variables x and y. The black node would
not be included in the symmetry-reduced tree. Prior to the jump, we have ValsIn′ = {x 7→
1, y 7→ 0, y 7→ 1, z 7→ 0} and SD ′ = ValsIn′ ∪ {z 7→ 1}. After the jump, we have ValsIn′ =
{x 7→ 0, x 7→ 1, y 7→ 1, z 7→ 0} and SD ′ = ValsIn′ ∪ {z 7→ 1}.

Figure 4: Propagator tree for LABS 2 constraint (arity 5). The solid black node is the
root. Red nodes are shared between the standard and symmetry-reduced trees. Rectangular
nodes show where a normal node was replaced with a symmetric jump. Dashed arrows are
symmetric jumps. Unfilled circular nodes are included in the standard propagator tree only.
The standard propagator tree has 372 nodes and the symmetry-reduced tree has 60.
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where all but one literal are known not present, and the remaining literal is
unknown, because we know that at least one literal must be present. Therefore
a variable of domain size d has 3d − d− 1 possible states.

Consider the n1 symmetric variables. As the order of these variables is
unimportant, we can fully characterise each equivalence class by the number of
symmetric variables it contains of each 3d1−d1−1 possible state, giving a bound

of (n1 + 1)(
3d1−d1−1). This bound is a loose approximation but is sufficient to

show that the number of equivalence classes is polynomial in n1 when d1 is fixed.
The number of states of any one of the n2 asymmetric variables can take

is 3d2 − d2 − 1. Therefore the number of states of the asymmetric variables is
simply

(
3d2 − d2 − 1

)n2
. Therefore the total number of equivalence classes of

node-states is O
((

3d2 − d2 − 1
)n2

.(n1 + 1)(
3d1−d1−1)

)
. �

Lemma 4 does not directly give a bound on the size of the symmetry-reduced
tree, because a tree can contain multiple nodes belonging to one equivalence
class. The first of these nodes has a subtree beneath it, and the rest of them
have a jump to the first.

Lemma 5. Suppose a constraint c (with symmetry group G) has e equivalence
classes of node states. The number of nodes of a symmetry-reduced tree for c is
O(e).

Proof. Given the symmetry-reduced tree T for c and G, remove all symmetric
jumps from the tree to form the labelled binary tree T ′. In T ′, the nodes
corresponding to jump nodes in T are now leaf nodes. For each equivalence
class, there can be at most one interior node belonging to the class because
any other node in the class must be a leaf node in T ′ (and a jump node in T ).
Therefore there are at most e interior nodes, and at most 2e+ 1 nodes in total.

�

The lemma above gives us a bound on the symmetry-reduced tree size which
is polynomial in n1 and exponential in n2. This can be compared to the bound
of O(2nd) derived in Section 4.1.

7.2.1. A tighter bound given branching restrictions

While we have shown that using symmetry-reduced trees can, in highly sym-
metric constraints, produce a polynomial bound in tree size, these polynomials
can be extremely large. For example, for a constraint with total variable sym-
metry and variables of domain size 3 the upper bound is O(n23). In this section
we will substantially tighten this bound.

In order to find a tighter bound, we restrict the branching order. We choose
a variable x, and branch only on literals of x until we have complete knowledge
of the domain of x. This is similar to enumeration branching (also known as
d-way branching) in CP search [1](4.2), however we are still performing 2-way
branches.
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In order to prove this result, we first derive a bound with true enumeration
branching. This is performed by selecting a variable, and branching for each
variable state. For a variable with domain size d, there will be 2d−1 non-empty
subdomains therefore at most 2d − 1 branches.

Lemma 6. Given enumeration branching, there are O
((

2d2
)n2

(n1 + 1)
2d1
)

equivalence classes of node-states of a partially symmetric constraint with pa-
rameters 〈n1, d1, n2, d2〉.

Proof. There are clearly 2d−1 non-empty subdomains for a variable of domain
size d. While we may deduce that some literals in variables not yet branched on
are either in or out by GAC propagation, two node-states which are equivalent
before GAC will be equivalent after GAC, therefore we can treat the domains
of variables we have not branched on as completely unknown for the purpose of
counting equivalence classes.

Including the completely unknown state, each variable has 2d states. We
can apply the same reasoning as Lemma 4 to show that there are

O
((

2d2
)n2

(n1 + 1)
2d1
)

equivalence classes of node-states. �

Suppose the number of equivalence classes is e. Using a similar argument to
Lemma 5, we can show that the number of interior (non-jump, non-leaf) nodes
is e, therefore the total number of nodes is (2d−1)e+1 (where d is the maximum
of d1 and d2).

Now we must convert the result to binary trees. For each node with t
children, we convert it to t−1 nodes by branching on each value in the domain in
turn. We call this whole-variable branching. For an enumeration tree with (2d−
1)e+1 nodes and a branching factor of 2d−1 we have (2d−1)×

(
(2d − 1)e + 1

)
−1

nodes in the binary tree. Combining this with Lemma 6 leads to the following
theorem.

Theorem 3. Given a partially symmetric constraint c defined by parameters
〈n1, d1, n2, d2〉, the size of a symmetry-reduced tree for c that performs whole-
variable branching is as follows, where d = max(d1, d2).

O
(

22d+d2n2(n1 + 1)
2d1
)

To take our example of a totally symmetric constraint with domain size 3,
the bound from the previous section is O(n23), and we have improved it to
O(n8).

7.3. Execution of Symmetry-Reduced Trees

We extend both methods of executing standard propagator trees to work
with symmetry-reduced trees in the sections below.
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7.3.1. Virtual Machine

We extend the virtual machine described in Section 3.5.2 with two more
instructions:

Perm : 〈l1, l2, . . . , ln〉 - Apply the given permutation of the literals. The number
of operands is the sum of the sizes of the initial domains.

Jump : 〈pos〉 - Jump to the position given.

To perform a jump to a symmetrically-equivalent state, the instruction
stream must have a Perm followed by a Jump.

When execution starts, the variable domains may be queried and pruned
directly. However, after the execution jumps to a symmetric state, the instruc-
tions no longer directly relate to the variable domains. Each literal queried or
pruned must be mapped through a permutation. Suppose the execution makes
a second jump to a symmetric state. Now each literal queried or pruned must
be mapped through two permutations (or the composition of them). We need
some mechanism for storing and composing permutations as the propagator is
executed. In Algorithm 5 we give the (almost trivial) algorithm to compose two
permutations. It takes three references p, q and r to blocks of memory, and
composes p (the currently stored permutation) with q and stores the result in
r.

Algorithm 5 Permutation composition compose(p, q, r)

Require: p: Current permutation.
Require: q: New Permutation from Perm instruction.
Require: r: Storage for composed permutation.

for i = 1 to length(p) do
r(i) = p(q(i))

The most straightforward method of composing permutations begins with
the identity p(i) = i and a spare buffer r. Each time a new permutation q
must be composed with p, we call compose(p, q, r) then copy r into p. This has
a number of inefficiencies. Repeatedly copying r into q is expensive. Also, it
is necessary to initialise p at the start of the algorithm. Further, all domain
queries and prunings must be done through the permutation, incurring a cost
even for propagator trees that do not contain any permutations.

To solve these problems, we introduce a four state finite state machine which
removes many of these costs. This finite state machine is shown in Algorithm 6.
This machine provides two functions. Apply takes an integer i and returns the
image of i under the current permutation. Update takes a permutation reference
q and updates the state accordingly.

Algorithm 6 minimises the costs of storing and applying permutation as far
as possible, avoiding all copying.
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Algorithm 6 Efficient permutation storage

Local Variable: ptr : A pointer to a permutation.
Local Variable: P3, P4: Two permutations.

State 1 (Initial State)
Apply(i) = i
Update(q) : Stores a reference to q in ptr. Moves to state 2

State 2 (Pointer State)
Apply(i) = ptr [i]
Update(q) : Calls compose(ptr , q, P3). Moves to state 3

State 3 (Stored State A)
Apply(i) = P3[i]
Update(q) : Calls compose(P3, q, P4). Moves to state 4

State 4 (Stored State B)
Apply(i) = P4[i]
Update(q) : Calls compose(P4, q, P3). Moves to state 3

The state machine above could be implemented as Apply and Update func-
tions, each containing a switch statement. However, this would introduce a
substantial inefficiency, particularly for Apply which is very heavily used. In-
stead we compile the whole virtual machine once for each of the four states.
The Apply function for each state is now very simple and efficient, and is read-
ily inlined. The Update function for each state performs the composition then
jumps into a different specialisation of the virtual machine.

One particular advantage of specialising the whole VM for each of the four
states is that in State 1 the Apply function is the identity, and the compiler
is able to optimise it away. This removes all cost when a propagator tree con-
tains no Perm instructions, therefore we use the same virtual machine for our
experiments with both symmetry-reduced and standard propagator trees.

7.3.2. Code Generation

The use of jumps in symmetry-reduced trees means we cannot use the simple
nested if/then/else structure used in Section 3.5.1. Instead, we produce code
that closely follows the virtual machine instructions. Each instruction becomes
a block of code with a label, and Branch and Jump instructions use goto to
jump to the appropriate label.

Code generation produces a very large function, therefore we compile it once
and it is not specialised for the four states of the permutation state machine.
The Apply and Update functions used here contain switch statements with one
branch for each of the four states. This means Apply and Update are likely to
be less efficient than in the VM.
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Figure 5: Tree size of LABS Six constraint

7.4. Refining GenTreeSym by limiting jumping

We will see below that eliminating symmetries can greatly reduce the size
of a propagator tree. However, there are situations near the leaves where the
space taken to insert a jump is greater than the size of the subtree that it
replaces, therefore inserting a jump will increase the size of the propagator tree.
Furthermore, when the propagator tree is executed, additional jumps will slow
down propagation.

To address this problem, we first assume that the representation is the virtual
machine instructions given in Sections 3.5.2 and 7.3.1. This means we can
calculate the size st of the destination subtree in terms of the number of integers
in the VM instructions. We can also calculate the size sj of the proposed jump
in the same way. If st < sj , then to insert the jump would increase the overall
tree size.

We introduce a new parameter JumpCutoff that controls when to insert a
jump. If st > JumpCutoff × sj then a jump is inserted, otherwise GenTreeSym
continues as GenTree would. Prior to line 22 of GenSymTree st and sj are
calculated, and line 22 is only executed if the condition holds, otherwise the
algorithm continues at line 25.

Note that st is the size of the destination subtree T1. Suppose we do not
insert a jump, and instead generate a new subtree T2. T1 and T2 are generated
from symmetric states, so we might expect them to be the same size. However,
the state of CanonicalLookup may have changed, therefore T2 may be smaller.
In some rare cases this means that changing JumpCutoff does not have the
expected effect.

For values between 0 and 1 of JumpCutoff, we should see the size of the tree
decreasing and propagation speed increasing. As JumpCutoff is increased above
1, the size of the tree will probably increase, and we expect that larger trees
will also have faster propagation speed. When JumpCutoff = ∞, GenTreeSym
generates exactly the same tree as GenTree. For the LABS Six constraint, and
symmetry group given in Section 8.3, Figure 5 shows the tree size for values of
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JumpCutoff from 0 to 10. This graph shows a minimum at 1.0 as expected.
For all our experiments we use JumpCutoff = 1 to obtain the smallest (in

the VM representation) symmetry-reduced trees.

7.5. Complexity of Execution of Symmetry-Reduced Trees

To find the complexity we need the set ValsMaybe = SD \ ValsIn. This set
has the property that its size is monotonically reduced as the tree is executed.
Each branch reduces ValsMaybe by one literal, whether the literal is in or out
of domain. Deletions may reduce the size of ValsMaybe. Jumps potentially
change the literals in ValsMaybe but not its size. We also need to observe that
a jump cannot take us to a node with another jump instruction, because jump
nodes are not entered in the CanonicalLookup table in Algorithm 4, and jump
destinations are always taken from CanonicalLookup.

We use the size of ValsMaybe as our measure of progress. At the root node
the size is at most nd, therefore in an execution path we have at most nd nodes
where we branch, plus one leaf node. We also have up to nd jump nodes, because
there are at most nd destinations.

To perform O(nd) branches has a cost of O(nds), where s is the cost of
testing whether a value is in the domain. Performing O(nd) permutation ap-
plications and jumps has a cost of O(n2d2). The cost of deleting literals is less
straightforward. We use r for the cost of deleting a single literal. When we per-
form a jump, the destination node may delete literals that have already been
deleted. Since we have at most 2nd + 1 nodes and trivially O(nd) deletions at
each node, the cost of deleting literals is O(n2d2r). Combining the three gives
us a total cost of O(nds + n2d2 + n2d2r).

Theorem 4. Given a solver where querying and deleting literals is O(1) (such
as Minion) the complexity of executing a symmetry-reduced tree is O(n2d2).

8. Experimental Evaluation of Symmetry-Reduced Trees

In this section we compare the scalability of symmetry-reduced trees to that
of propagator trees, and also measure the overhead of exploiting symmetry when
the propagator is executed. We use the same three problems as in Section 5,
and also add two variants of Life, Life Immigration and Brian’s Brain, both of
which have three colours.

For each constraint, we have a group of permutations of the literals. To
describe the group compactly we only give the group generators, therefore to
obtain the full group all possible products of the generators must be added.

8.1. Time taken to generate propagators

In this section we compare the time taken to run GenTree and GenTreeSym.
This is relevant for both the VM and code generation. For code generation, we
report the time to compile the propagator tree and link it to Minion. These
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Standard Tree Symmetry-Reduced Tree
Python Compiler Python GAP Compiler

LABS 2 0.32 20.89 0.80 4.54 22.48
LABS 3 1.92 98.06 1.84 8.74 25.03
LABS 4 10.32 6, 256.25 3.80 17.14 25.12
LABS 5 451.19 8.35 44.91 41.23
LABS 6 31.15 116.94 60.98
Brian 507.10 2, 241.89
Immig 279.90 1, 014.00 5, 605.33
Life 8.26 4, 054.17 3.61 14.82 31.72
PegSol 0.37 21.58 0.93 5.40 24.26

Table 7: Time taken to generate the standard and symmetry-reduced propagator trees, in
Python, GAP and the C++ compiler.

Starting Node rate (per s)
position Propagator tree Min

Standard Sym-reduced
Compiled VM Compiled VM

1 9,046 6,663 6,823 5,726 7,445
2 5,624 4,423 5,518 4,695 4,714
4 8,634 6,556 6,947 5,547 7,064
5 8,684 6,834 8,139 6,361 7,565
9 8,827 6,536 6,841 5,837 6,990
10 10,076 7,727 8,924 6,513 7,921
17 6,470 4,797 4,820 4,808 4,702

Table 8: Results on peg solitaire problems.

figures are shown in Table 7, and empty cells denote the computer running out
of memory (>12 GiB). For GenTreeSym we have an additional column in Table
7 for group computation performed in GAP.

8.2. Case Study: English Peg Solitaire

The English Peg Solitaire problem is described in Section 5.2. We generate
propagators for the following constraint on boolean variables.

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5 ∧ x6)⇔ x7

The symmetry group we use is as follows: x1, x3 and x6 are interchangeable,
and so are x2, x4 and x5. The following pairs of literals may be swapped
simultaneously: (x1 7→ 0, x2 7→ 1) and (x1 7→ 1, x2 7→ 0) (i.e. the two variables
are exchanged and the values 0, 1 are exchanged). The size of the group is 720.

The standard propagator tree has 315 nodes, and the algorithm explores
509 nodes when generating it. The symmetry-reduced tree has 94 nodes and
GenTreeSym explored 121 nodes.
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Table 8 shows our results for peg solitaire. We omit run times and just give
node rates because all methods explore the same tree. Of the two hand-written
propagators (Min and Reified Sumgeq), Min is always superior (Table 3) so we
omit Reified Sumgeq from this table. We also omit Lighttable, Table, MDDC,
STR2+ and Regular.

Table 8 shows very little overhead from exploiting symmetry when using the
VM. However when using code generation, the overhead can be more than 25%.
As we noted in Section 7.3.2, code generation has the disadvantage that the
Apply and Update functions are less efficient than in the VM. Even so, code
generation outperforms the VM whether or not we apply symmetry reduction.

8.3. Case Study: Low Autocorrelation Binary Sequences

The Low Autocorrelation Binary Sequence problem is described in Sec-
tion 5.3. In the previous experiment, we grouped pairs of product constraints
to form a 5-ary constraint and reduce the number of auxiliary variables. In this
experiment we combine sets of 2, 3, 4, 5 and 6 product constraints to form con-
straints of arity 5, 7, 9, 11 and 13. Take for example the constraint of arity 7,
where the domains of x1 . . . x6 are {−1, 1} and the domain of x7 is {−3,−1, 1, 3}:

(x1 × x2) + (x3 × x4) + (x5 × x6) = x7

The generators of the symmetry group for the arity 7 constraint are as
follows. x1 and x2 are interchangeable, and pairs (x1, x2), (x3, x4) and (x5,
x6) are interchangeable. x1 and x2 may be negated simultaneously (i.e. for
both variables, swap the values −1 and 1). Finally, x1, x3, x5 and x7 may be
negated simultaneously. This final generator states that if each term in the sum
is negated, then the total is also negated. The symmetry group is adapted in
the straightforward way to other arities.

For Lighttable, Table, MDDC and STR2+, the size of the table when group-
ing 2, 3, 4, 5, and 6 product constraints is 16, 64, 256, 1024 and 4096. The
Regular decomposition was consistently the slowest method when grouping 2
product constraints, and so we did not extend it to 3, 4, 5 and 6.

Table 9 shows run times for the largest instance of LABS (n = 30), and the
sizes of the propagator trees (number of nodes) for each arity. From the tree
sizes we can see that exploiting symmetry allows propagator trees to scale much
better. The tree for six pairs (arity 13) with symmetry is smaller than the tree
for three pairs (arity 7) without symmetry. Exploiting symmetry can reduce
the tree size by orders of magnitude.

However, as the constraints are scaled up, we find that the solver becomes
less efficient. This is explained by two factors. First, increasing the length of
the constraints does not strengthen propagation, because the sum of products is
a tree. Second, propagator trees have no incremental state and cannot exploit
triggers (as described in Section 3.3). Each time they are called they start from
scratch, with a bound of O(n2d2) (when using symmetry), therefore the cost
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Two Three Four Five Six

Standard
Compiled 237.06 257.41 275.96 mem mem

VM 239.63 263.81 304.77 323.51 mem

Sym-reduced
Compiled 271.55 317.21 401.15 440.06 534.38

VM 293.64 361.15 452.21 488.00 553.80
Lighttable 539.49 940.82 1,246.17 1,864.01 2,543.93

Table 502.08 796.60 1,135.31 1,549.06 2,103.86
MDDC 535.10 662.38 863.96 1,006.41 1,173.48
Regular 1,199.77
STR2+ 348.53 398.06 508.56 645.57 1,086.97
Product 276.64

Tree Size
Standard 372 4,316 47,092 495,196 mem

Sym-reduced 60 166 390 736 1,336
Group size 64 768 12,288 245,760 5,898,240

Table 9: Results on LABS problem size 30. All times are a mean of 5 runs. For the VM,
‘mem’ indicates that the GenTree exceeded 12 GB memory. For the compiled variant, ‘mem’
indicates that either GenTree or the compiler exceeded 12 GB.

Two Three Four Five Six

Standard
Compiled 9.22 9.39 11.71 mem mem

VM 10.03 10.35 11.47 12.38 mem

Sym-reduced
Compiled 11.97 12.41 14.64 18.04 22.85

VM 11.02 14.59 18.74 19.65 22.25
Lighttable 22.42 38.14 53.38 80.88 114.20

Table 20.06 29.74 47.17 58.48 91.20
MDDC 18.49 26.35 30.72 35.86 43.77
Regular 47.13
STR2+ 14.00 16.05 20.45 28.12 31.11
Product 11.57

Table 10: Results on LABS problem size 25. All times are a mean of 5 runs.

of executing a propagator tree is likely to increase as the arity increases. In
contrast, the cost of the product propagator is O(1), and the sum is O(n).

The same pattern can be seen on the n = 25 instance (Table 10). For both
n = 25 and n = 30, the fastest configuration is the compiled standard propaga-
tor tree, group two. Longer constraints slow the solver down substantially. The
other instances n ∈ {26, 27, 28, 29} also exhibit the same pattern.

Tables 9 and 10 also show that propagator trees compare well to the generic
GAC propagators as the arity is increased. STR2+ is the fastest of the generic
GAC propagators and it is consistently slower than all propagator tree methods.

This experiment has demonstrated that symmetry is very helpful in extend-
ing the scalability of propagator trees. However, on this particular problem,
increasing the arity does not allow more powerful propagation.

8.4. Case Study: Maximum Density Oscillating Life & Variants

Life, and the problem of finding maximum density oscillators, is described in
Section 5.4. In addition to Life, we sought related automata where the cells have
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three states. This allows us to scale up the number of literals in the generated
constraints, and demonstrate the value of symmetry reduction.

Immigration [28] and Brian’s Brain [29] are both variants of Life where the
cells have three states. For both Immigration and Brian’s Brain, it is not possible
to generate the standard propagator tree within 12 GB memory, however it is
possible to generate symmetry-reduced trees.

The Life, Immigration and Brian’s Brain constraints all have the symmetry
that the first eight variables (representing the neighbours) are interchangeable.
In Immigration it is also possible to swap the two alive states for all variables
simultaneously.

Life

Of the three problems, only Life can be used to compare propagator trees
with symmetry-reduced trees. The Life constraint has 8! = 40, 320 symmetries,
the standard propagator tree has 26,524 nodes and the symmetry-reduced tree
has 410 nodes. Table 11 shows that the symmetry-reduced tree is less efficient
than the standard tree on this problem, taking up to 3 times longer to solve to
optimality. Code generation proved to be somewhat more efficient than the VM
for the symmetry-reduced tree.

In the previous Life experiment we found Sum to be more efficient than any
of the generic propagators and the Regular decomposition (as shown in tables 5
and 6). The symmetry-reduced tree compares well to Sum, being approximately
twice as fast for all instances.

As Table 7 shows, the overhead of generating the compiled, symmetry-
reduced Life propagator is 50.15s in total, therefore on five instances (n = 6,
p ∈ {5, 6} and n = 7, p ∈ {3, 4, 5}) that propagator tree more than pays back
its overhead.

Immigration

Immigration is similar to Life, but there are two alive states (usually rep-
resented as two colours). When a cell becomes alive, it takes the state of the
majority of the 3 neighbouring live cells that caused it to become alive. Other-
wise the rules of Immigration are the same as those of Life. The Immigration
constraint has the same scope as the Life constraint, but each variable has three
values.

The Immigration constraint has 8! × 2 =80,640 symmetries. It is not pos-
sible to generate the standard propagator tree within 12 GB of memory. The
symmetry-reduced tree has 34,712 nodes.

For the Sum model each Immigration constraint is represented as follows.
For each b[i, j, t], we introduce two auxiliary variables sdead[i, j, t] and s1[i, j, t]
both with domain {0 . . . 8}. sdead is the number of dead adjacent cells, and s1
is the number in live state 1 adjacent cells. Both are linked to the adjacent cells
using an occurrence constraint. sdead[i, j, t], s1[i, j, t], b[i, j, t] and b[i, j, t+1] are
linked with a lighttable constraint encoding the liveness rules. This encoding
does not enforce GAC on the original constraint.
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n p Time (s)
Propagator tree Sum

Standard Sym-reduced
Compiled VM Compiled VM

5 2 0.02 0.04 0.04 0.05 0.08
5 3 0.11 0.17 0.19 0.23 0.39
5 4 0.53 0.71 1.01 1.15 2.36
5 5 1.47 2.38 3.62 4.55 6.80
5 6 3.08 4.46 6.66 8.49 13.79
6 2 0.17 0.28 0.34 0.35 0.68
6 3 1.20 1.85 2.76 2.89 5.76
6 4 14.90 23.66 32.42 37.30 78.30
6 5 189.48 266.26 480.09 500.43 934.89
6 6 618.86 1,139.67 1,715.76 1,947.89 3,269.44
7 2 2.46 3.68 6.08 7.34 11.43
7 3 22.14 39.90 65.50 70.16 128.77
7 4 454.26 679.37 1,195.79 1,236.32 2,175.51
7 5 13,376.00 21,314.90 32,022.86 38,031.06 70,910.76
7 6 timeout timeout timeout timeout timeout

Table 11: Time to solve to optimality for standard and symmetry-reduced propagator trees
on the Life problem.

As in previous experiments we have five generic GAC methods: Lighttable,
Table, MDDC and STR2+ with a table containing 19,683 satisfying tuples, and
the Regular decomposition [17] with 25 states and ternary table constraints (for
the transition table) with 67 satisfying tuples.

Table 12 shows that the symmetry-reduced tree methods outperform all five
generic GAC methods while exploring the same search tree. Table and MDDC
are the most efficient among the five generic GAC methods, and VM outper-
forms both Table and MDDC by approximately two times. VM is somewhat
faster than code generation on this problem. Finally, the symmetry-reduced tree
methods are substantially more efficient than the Sum model. Sum is slower
per node and explores many more nodes than VM.

The total overhead of generating the VM symmetry-reduced propagator is
1,293.9s. Therefore, for instances n = 5, p ∈ {5, 6} and n = 6, p ∈ {2, 3, 4}
it repays its overhead (even if the propagator were generated once for each
instance) and remains substantially faster than the other methods. Because the
constraint is the same for all instances, the cost can actually be amortised over
all instances.

Brian’s Brain

Brian’s Brain is another variant of Life with three values: dead, alive and
dying. If a cell is dead and has exactly two alive (not dying) neighbours, it will
become alive, otherwise it remains dead. If a cell is alive, it is always dying after
one time step. If a cell is dying, it becomes dead after one time step.

The Brian’s Brain constraint has 8! =40,320 symmetries. It is not possible
to generate the standard propagator tree for this constraint within 12 GiB of
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n p Time (s)
Symmetry-reduced tree Sum Table MDDC Lighttable
Compiled VM

5 2 5.41 4.27 12.38 16.79 11.51 18.02
5 3 32.15 25.83 106.96 88.38 77.49 128.13
5 4 377.39 330.28 1,781.38 1,057.20 833.23 1,582.97
5 5 3,664.06 3,087.38 15,940.08 7,242.53 6,879.83 15,373.76
5 6 12,561.54 11,161.40 50,838.98 22,767.08 25,032.70 56,345.80
6 2 1,434.13 1,294.49 3,214.36 3,909.51 2,264.14 5,456.36
6 3 5,074.60 4,104.27 15,084.32 13,956.02 9,752.76 19,364.86
6 4 60,636.74 50,209.10 timeout timeout timeout timeout

n p Time (s)
Regular STR2+

5 2 68.81 46.26
5 3 483.82 419.95
5 4 5,953.59 4,930.51
5 5 56,861.56 56,461.66
5 6 timeout timeout
6 2 16,048.28 5,321.00
6 3 62,645.52 46,649.66
6 4 timeout timeout

n p Nodes
GAC Methods Sum

5 2 90,745 193,684
5 3 347,115 851,602
5 4 2,743,923 8,923,604
5 5 17,216,657 57,187,571
5 6 48,273,400 130,935,764
6 2 26,735,448 53,300,293
6 3 53,878,608 133,274,167
6 4 469,264,819 timeout

Table 12: Time to solve to optimality, for each implementation of the Immigration constraint,
for various values of board size n and period p.

memory. The symmetry-reduced propagator tree has 135,575 nodes. This can
be executed using the VM, but not by code generation (Section 7.3.2) because
the compiler exceeds 12 GiB of memory.

For the Sum model each Brian’s Brain constraint is represented as follows.
For each b[i, j, t], we introduce one auxiliary variable salive[i, j, t] with domain
{0 . . . 8}. This is linked to the adjacent cells using an occurrence constraint.
salive[i, j, t], b[i, j, t] and b[i, j, t + 1] are linked with a lighttable constraint en-
coding the liveness rules. This encoding does not enforce GAC on the original
constraint.

As for Immigration we have five generic GAC methods: Lighttable, Table,
MDDC and STR2+ with a table containing 19,683 satisfying tuples, and the
Regular decomposition [17] with 11 states and ternary table constraints (the
transition table) with 27 satisfying tuples.

Table 13 shows our results. In the case of Brian’s Brain, the Sum encoding
performs particularly badly. For example when n = 6, p = 6, Sum takes over
600 times more search nodes than the other methods.

Once again the symmetry-reduced tree outperforms all types of table con-
straint and the Regular decomposition. The total overhead of generating the
symmetry-reduced tree (from Table 7) is 2,749s. If the tree were generated
once for each instance, it would repay its overhead only on the hardest instance
n = 8, p = 6. However in general we amortise the cost of generating the tree
over all instances.
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n p Time (s)
Sym- Sum Table MDDC Lighttable

reduced
tree, VM

6 2 0.18 0.03 0.20 4.37 0.22
6 3 0.99 1.64 3.74 7.88 5.56
6 4 0.93 4.09 3.88 10.22 4.72
6 5 1.25 8.14 5.22 13.31 7.90
6 6 23.62 4,973.44 91.28 57.38 133.09
7 2 0.19 0.04 0.20 5.78 0.20
7 3 9.97 20.47 42.23 30.43 53.67
7 4 4.83 43.94 21.44 24.48 31.27
7 5 8.04 117.42 29.37 33.44 42.32
7 6 635.54 timeout 2,746.48 1,584.82 3,885.54
8 2 0.19 0.05 0.20 7.55 0.21
8 3 163.86 445.54 697.13 334.98 926.29
8 4 30.20 394.76 137.12 81.85 151.18
8 5 49.93 2,223.32 239.38 150.47 378.54
8 6 16,698.16 timeout 67,789.40 41,338.70 timeout

Time (s)
n p Regular STR2+
6 2 0.08 3.61
6 3 5.15 51.68
6 4 3.74 56.98
6 5 5.94 94.99
6 6 108.44 878.82
7 2 0.10 4.58
7 3 50.42 539.35
7 4 26.64 390.13
7 5 38.58 555.07
7 6 3,125.78 31,813.20
8 2 0.11 5.60
8 3 813.51 7,979.88
8 4 141.52 2,513.07
8 5 273.36 4,728.69
8 6 82,353 timeout

Nodes
n p GAC Methods Sum
6 2 30 30
6 3 6,658 31,978
6 4 4,451 68,193
6 5 5,155 95,601
6 6 80,501 53,499,585
7 2 42 42
7 3 74,367 473,036
7 4 28,722 690,201
7 5 35,085 1,646,109
7 6 2,415,289 timeout
8 2 56 56
8 3 1,228,908 8,938,209
8 4 168,530 6,585,497
8 5 252,274 28,950,186
8 6 64,063,724 timeout

Table 13: Time to solve to optimality, for each implementation of the Brian’s Brain constraint,
for various values of board size n and period p.

8.5. XCSP Benchmarks

Our final experiment is on the XCSP benchmarks compiled by Christophe
Lecoutre.3 We used CSP and MaxCSP benchmarks and discarded WCSP.
MaxCSP instances are treated as CSP. Benchmarks containing only intensional
constraints were discarded. All remaining benchmarks were translated to Min-
ion file format.

In this section we say a relation is a semantic description of a constraint,
and a scope is the application of a relation to a particular set of variables in a

3The entire set of XCSP benchmarks was downloaded from http://www.cril.

univ-artois.fr/~lecoutre/benchmarks.html on 26th June 2013.
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particular benchmark. XCSP benchmarks contain both positive and negative
extensional relations. We represent an extensional relation by a set of initial
domains, a table of (satisfying or unsatisfying) tuples of domain values, and a
single boolean value indicating whether the table is positive or negative. Two
relations are distinct iff this representation is distinct.

The table below summarises the occurrences of extensional relations and
scopes in the benchmark set. The first line indicates that (of the 6.5 million
scopes) in 10.61% of cases the same relation has no other scope, and in 85.60%
of cases the same relation has at least 99 other scopes (the 100+ column). The
second line indicates that most of the relations have only one scope.

Number Percentage of occurrences
1 2-9 10-99 100+

Extensional Scopes 6,534,116 10.61 2.21 1.58 85.60
Extensional Relations 750,346 92.37 6.94 0.58 0.11

We focus on relations with 100 or more scopes. This means we consider only
827 relations, but over 85% of scopes.

The largest constraints for which we have successfully generated symmetry-
reduced trees are Brian’s Brain and Immigration (both of which have 30 literals)
and LABS Six (which has 31 literals). All three took over two minutes to
generate (Table 7). To avoid long generation times we filtered out the 113
relations that have more than 30 literals.

For the remaining 714 relations we found the symmetry group of each relation
using a graph automorphism algorithm implemented in GAP. We ran GenTree
and GenTreeSym on these 714 relations. GenTree was limited to exploring 3
million nodes, and GenTreeSym was limited to exploring 400,000 nodes. Within
these limits, both algorithms generated trees for the same set of 683 relations.
GenTree took a total of 184,291s, and GenTreeSym took 147,863s (including
both Python and GAP) when executed in parallel on a 32-core AMD Opteron
6272 at 2.1 GHz.

The symmetry-reduced trees algorithm performed only 8% as much search
while generating propagator trees, and the symmetry-reduced trees took 13% as
much space as the standard trees. However both approaches generated trees for
the same set of relations within the node limits. There are two reasons for this:
firstly the library (named SCSCP) we used to link Python and GAP is quite
slow therefore we have a much lower node limit on GenTreeSym than GenTree.
Secondly, the symmetry groups were in the main quite small, with most having
between 1 and 1024 symmetries.

The VM instructions for these 1366 propagator trees were stored on disk
using an SHA-1 hash of the relation as part of the filename. For this experiment
Minion was extended with a special table constraint that computes the hash of
the relation and attempts to load a matching propagator tree. If there is no
propagator tree it uses a generic GAC propagator.

We filtered the benchmark set to remove any benchmarks containing no
scopes of the set of 683 relations. We also filtered out benchmarks that take
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Figure 6: XCSP experiment comparing MDDC and Table to both standard and symmetry-
reduced propagator trees for all benchmarks with 100 or fewer nodes of search. The x-axis is
the time without propagator trees for the generic GAC propagator. The y-axis is the speed-up
factor obtained when propagator trees are used. The table gives the geometric mean of the
total time for each configuration.

more than 12 GiB memory.4 1,930 benchmarks remained from 34 series.
On the Life, LABS, Peg Solitaire, Immigration and Brian’s Brain problem

classes, no one generic GAC propagator clearly dominates the others. Minion’s
Table propagator, MDDC and STR2+ are each most efficient for different sub-
sets of the instances. For this experiment we need both positive and negative
table propagators, and we do not have a negative STR2+ propagator. There-
fore we compare propagator trees to Minion’s Table propagator and its negative
counterpart (both using a trie datastructure), and to MDDC (the Sparse vari-
ant, as in previous experiments) using an MDD generated from either a positive
or negative table.

When comparing MDDC to propagator trees, each benchmark is executed
three times. First it is executed with all extensional relations implemented by
MDDC. Second, each of the 683 relations with a standard propagator tree are
implemented by the propagator tree and the other relations by MDDC. Third,
each of the relations with a symmetry-reduced propagator tree are implemented
by that propagator tree and the others by MDDC. Similarly, to compare to
Table each benchmark was executed three times. Each run had a time limit of
30 minutes and they were performed 32 in parallel on an AMD Opteron 6272
at 2.1 GHz.

Figure 6 plots the results for benchmarks where there was 100 or fewer
nodes of search (1,470 benchmarks). These plots compare total time. On these

4Minion’s Discrete variable type was used for all variables. Discrete is the only variable
type that allows GAC to be enforced on table constraints. Memory use is proportional to the
number of domain values.
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benchmarks, on average propagator trees provide very little benefit compared
to either MDDC or Table.

Figure 7 shows the results for all benchmarks with more than 100 search
nodes (460 benchmarks). Many benchmarks timed out so we use node rate in
these plots. The plots for standard and symmetry-reduced trees are broadly
similar, and for both we find most points lie between a factor of 3 speed-up and
equal speed. Comparing MDDC to Table, the results are also broadly similar.
For both MDDC and Table, most points lie between 1 and 3 times speed-up.

Comparing Table to standard trees using geometric means, the speed-up
factor is 1.61. 184,291s was spent generating the standard trees, which is on
average 401s per benchmark. On average, after 657s of search the standard tree
configuration has paid off the initial cost of GenTree. Of the 460 benchmarks,
303 searched for more than 1000s and so more than paid off the cost of generating
the trees.

When generating the standard trees, we observed that in almost all cases
GenTree takes less than 5s, and the total time is inflated by a small number
that take thousands of seconds. Setting a limit of 5s would dramatically reduce
the total time (to less than 3,570s) while generating 633 propagator trees as
opposed to 683, and we expect it would reduce the pay-off point dramatically
too.

Finally, our experiments underestimate the effect of propagator trees because
they include propagating all other extensional and intensional constraints and
the search algorithm.

8.6. Experimental Conclusions

These experiments have demonstrated that symmetry is useful in extending
the scalability of propagator trees. On LABS, we found that the symmetry-
reduced trees were orders of magnitude smaller than standard propagator trees.
For Life, we found the symmetry-reduced tree was 64 times smaller. Also,
we were able to scale up to Immigration and Brain’s Brain (with 30 literals,
compared to 20 for Life).

The efficiency of symmetry-reduced trees during execution (compared to
standard propagator trees) is good for LABS and Peg Solitaire, but for Life we
found them to be approximately two times slower. Even so, symmetry-reduced
trees outperformed table constraints in all our experiments except XCSP, where
symmetry-reduced trees still performed better on average than table constraints.
For each problem, the best symmetry-reduced tree outperforms all other meth-
ods except standard propagator trees.

Finally we compared standard and symmetry-reduced trees to generic GAC
propagators using a large set of XCSP benchmarks. This experiment showed
that propagator trees can be of benefit on a wide range of problems, with a few
conditions: that the problems should be sufficiently difficult that they cause
the solver to do a non-trivial amount of search, that there are relations small
enough to apply GenTree or GenTreeSym, and that some of those relations have
multiple scopes in the set of problems.
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Figure 7: XCSP experiment comparing MDDC and Table to both standard and symmetry-
reduced propagator trees for all benchmarks with more than 100 nodes of search. The x-axis
represents the node rate without propagator trees for the generic GAC propagator. The y-axis
is the speed-up factor obtained when propagator trees are used. The table gives the geometric
mean of the node rate for each configuration.
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9. Related Work

GAC Table Propagators

There are a variety of algorithms which achieve GAC propagation for arbi-
trary constraints, for example GAC2001 [3], GAC-Schema [4], MDDC [5], STR2
[6] and Regular [8]. These approaches can typically enforce GAC in polynomial
time when their data structure is of polynomial size (whether it is a list of tuples,
a trie, an MDD or a finite automaton). In the worst case they have exponential
time complexity. Our approach differs in that it guarantees polynomial time
propagation after an exponential preprocessing step.

In GAC2001 and GAC-Schema, constraints presented as a set of allowed tu-
ples have the allowed tuples stored as a simple list. There have been a number
of attempts to improve upon these algorithms by using different data structures
to store the allowed tuples. Notable examples are tries [7], Binary Decision Dia-
grams [9], Multi-valued Decision Diagrams [5] and c-tuples (compressed tuples)
[11]. In all cases the worst case complexity is polynomial in the size of the data
structure. In some cases the data structure can be much smaller than an explicit
list of all allowed tuples, but the worst case time remains exponential. That is,
establishing GAC during search can take time dn, compared to our worst case
of O(nd), or O(n2d2) with symmetry reduction (assuming the solver can query
and remove domain values in O(1) time).

Other improvements to GAC table propagators, such as caching and reusing
results [30], have also improved average-case performance, but have not removed
the worst-case exponential behaviour.

Constraint Handling Rules

Constraint Handling Rules is a framework for representing constraints and
propagation. Apt and Monfroy [31] have shown how to generate rules to enforce
GAC for any constraint, although they state that the rules will have an expo-
nential running time in the worst case. ARM [32] will automatically generate
sets of constraint handling rules for a constraint, but may not achieve GAC.
Further, how completely and efficiently the rules will be executed is dependent
on the CHR system the rules are used in.

The major difference therefore between these techniques and the algorithms
in this paper is that our algorithms provide guaranteed polynomial-time execu-
tion during search, at the cost of much higher space requirements and prepro-
cessing time than any previous technique. Work in CHR is closest in spirit to
our work, but does not guarantee to achieve GAC in polynomial time.

It is possible that techniques from knowledge compilation [33] (in particular
prime implicants) could be usefully applied to propagator generation. However,
the rules encoded in a propagator tree are not prime implicants — the set of
known domain deletions is not necessarily minimal. We do not at present know
of a data structure which exploits prime implicants and allows O(nd) traversal.
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Symmetry

There is a large body of work on symmetry breaking in constraint program-
ming. The research focuses on reducing search effort by avoiding search states
that are symmetric to previously-seen states, using a number of different tech-
niques. For example, Symmetry Breaking During Search [20] posts constraints
during search to forbid visiting symmetric states in the future. Symmetry Break-
ing by Dominance Detection (SBDD) [34] checks each state for symmetry to
previously-seen states. Also, there are many approaches to breaking symme-
try by adding constraints prior to search, for example lexicographic ordering
constraints [35].

Of these approaches, our algorithm is most similar to SBDD. However, unlike
SBDD we are not merely checking if the current state is dominated, we need
a reference to the previous (symmetric) state and a permutation mapping one
to the other. Therefore we store all previous states, whereas in SBDD sibling
states are merged in the database. Also, our algorithm runs in polynomial time
during search, whereas SBDD solves an NP-complete problem at every node.

Our definition of symmetry is based on Cohen et al. [27].

10. Conclusion

We have presented a novel and general approach to propagating small con-
straints. The approach is to generate a custom stateless propagator that en-
forces GAC in O(nd). This is a spectacular improvement over other general
techniques, which are exponential in the worst case, but comes with an equally
spectacular tradeoff. This is that the stored propagator can be very large —
it scales exponentially in the size of the constraint — therefore generating and
storing it it is only feasible in general at very small sizes.

We have presented two methods for storing and then executing the generated
constraints. One is to construct special purpose code (in our case in C++) and
then compile it before use. The second is that we use a simple virtual machine
with a tiny special purpose instruction set in which propagator trees can be
executed. The second method has the advantage of not requiring compilation –
apart from the convenience of not needing a compiler sometimes the propagator
code becomes too big to compile.

We demonstrated that the propagator generation approach can be highly
efficient compared to table constraints. For example, on Life n = 7, p = 4, the
standard propagator tree is 9.7 times faster than MDDC, and 7.2 times faster
than an encoding using a sum constraint. Remarkably, propagator trees can
even be faster than hand-optimised propagators. For example, we achieved a
27% speedup on a min constraint in peg solitaire instance 10.

We significantly extended the scalability of our approach by exploiting sym-
metry within the constraint. To do this we introduced symmetry-reduced trees
and algorithms for dealing with them. This allowed us to scale up from the
Life constraint (with 20 literals) to extended variants of Life with 30 literals.
While this may seem a small step, it enabled us to solve variants of Life for
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which we could not previously build trees. On the LABS problem we observed
three orders of magnitude reduction in the size of the generated propagator
tree. Again we provided both compiled and virtual machine implementations.
However run time worsens to O(n2d2) in the worst case from O(nd) in the
non-symmetric case. This did cause a slowdown in our experiments compared
to the non-symmetric version where available, but we still achieved very good
performance.

Our analysis of the XCSP benchmark set showed that while there were
750,346 different constraint relations applied to over 6.5 million scopes, the most
common 827 constraint relations covered over 85% of the constraint scopes. This
demonstrates how a small number of specialised propagators can cover a large
proportion of the constraint scopes in a large set of benchmarks.

We believe that our approach of building special purpose generated con-
straint propagators has considerable promise for the future. While surprisingly
fast, the propagator trees are entirely stateless — there is no state stored be-
tween calls, and no local variables. They also do not make use of trigger events,
which are often essential to the efficiency of propagators. Therefore we believe
there is scope to scale the approach further and to improve efficiency. Addi-
tionally, we believe that symmetry-reduced trees are worthy of further study.
They are a general construction and further study may show them to have other
important applications beyond constructing efficient propagators.
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Appendix A. Canonicalisation of Sequences of Objects

In order to generate symmetry-reduced trees, we need to identify symmetric
node-states. To do this, we use a canonicalisation function. A node-state is
represented by a sequence of sets. We develop a canonicalisation function which
operates on sequences of objects (including sets). The function is novel to
the best of our knowledge, and is an extension of an existing group-theoretic
algorithm [24]. The algorithm requires that the objects in the sequence can be
stabilised and have a canonicalising function.

Definition 14. Given the following:

• a list L = [l1, . . . , ln];
• a canonicalising function f(li, Hc) for the li and any group Hc; and
• a stabilising function s(li, Hs) which returns (for any group Hs) the sub-

group of Hs which stabilises li,

then the function Can(L,G) is defined as follows:
If L is the empty list return the identity element of G, otherwise,

1. Find GCan = f(L[1], G).

2. Find GStab = s(L[1]GCan, G).

3. Generate the list L′ where ∀i ∈ {2..n} . L′[i− 1] = L[i]
GCan

, which is one
element shorter than L.

4. Return the permutation GCan.Can(L′,GStab).

The following theorem proves the correctness of the key definition above.

Theorem 5. The function Can(L,G), given in Definition 14, is a canonicali-
sation function.
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Proof. The permutation returned by Can(L,G) in Definition 14 is always a
member of G, as it is constructed by composing elements of G. Therefore it
suffices to prove for any sequences L and M of equal length, if there exists g ∈ G
such that Lg = M then LCan(L,G) = MCan(M,G). We proceed by induction on
the length of L and M . If they are empty, then the result is trivially true.

We shall refer to f(L[1], G) as c, and f(M [1], G) as d. As f is a canonicalising
function, and L[1]g = M [1], then L[1]c and M [1]d are equal. Therefore both
s(L[1]c, G) and s(M [1]d, G) are the same group. Call this group GStab.

Now we consider the recursive call to Can. For L, this involves applying c
to L[2], . . . , L[n]. For M , this involves applying d to M [2], . . . ,M [n], which is
the same as applying g.d to L[2], . . . , L[n].

We will now prove that there exists a group element h in GStab that maps
L[2..n]c to M [2..n]d. h is the equivalent of g in the inductive step. As discussed
earlier, L[1]c = M [1]d and M [1]d = L[1]g.d. Let h be defined such that c.h = g.d.
It is trivially true that L[1]c.h = L[1]g.d and therefore L[1]c = M [1]d = L[1]g.d =
L[1]c.h, so h is in the stabiliser of L[1]c, which is GStab.

Let a = Can(L[2..n]c,GStab) and b = Can(M [2..n]d,GStab). As the group
element h which maps L[2..n]c to M [2..n]d is in GStab, by the inductive hy-
pothesis, L[2..n]c.a = M [2..n]d.b. As a and b are in GStab, L[1]c.a = L[1]c and
M [1]d.b = M [1]d. Therefore Lc.a = Md.b, so LCan(L,G) = MCan(M,G). �

We now provide a concrete implementation of Can (Definition 14) for a list
of sets of points (represented using integers) in Algorithm 7. This algorithm
assumes the existence of two pre-existing group theory algorithms:

1. SetStabiliser(S,G) : Generates the subset of G which stabilises S.

2. MinimalImagePerm(S, [Stab, ]G) : Generates the element h of G such that
∀g ∈ G . h(S) ≤ g(S). The function may optionally be given Stab =
SetStabiliser(S,G) to provide a performance improvement. This is the
canonicalising function for sets that we use in Algorithm 7.

SetStabiliser is provided by any computational group theory package.
The algorithm MinimalImagePerm is built from the SmallestImage algorithm
of Linton [24]. The original algorithm of Linton provides the canonical image
of a set, and we modified it to return the permutation which generates the
canonical image. It is simple to augment the algorithm to produce this as it
progresses.

Calculating set stabilisers and minimal images are both expensive operations,
while calculating the conjugate of a group is very cheap. In [24], the algorithm
SmallestImage(S,G) may be given the result of SetStabiliser(S,G), which
in some cases leads to a substantial speed improvement. As we have to calculate
at least one set stabiliser during each step of our algorithm anyway, we generate
one early so we can pass it to MinimalImagePerm, and then conjugate it for the
next step of the algorithm.
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Algorithm 7 CanonicalSetList(G, 〈S1, . . . , Sn〉)
1: ModPerm ← e {The identity permutation}
2: CurrentG ← G
3: i← 1
4: while i ≤ n do
5: Stab ← SetStabiliser(ModPerm.Si,CurrentG)
6: MinPerm ← MinimalImagePerm(ModPerm.Si,Stab,CurrentG)
7: CurrentG ← StabModPerm {Take the ModPerm conjugate of Stab}
8: ModPerm ← MinPerm.ModPerm
9: if |CurrentG | = 1 then

10: return ModPerm
11: i← i + 1
12: return ModPerm

Theorem 6. Given a list of sets L = 〈S1, . . . , Sn〉 and a group G, then Algo-
rithm 7 is a canonicalising function.

Proof. Theorem 5 proves the abstract algorithm correct. Algorithm 7 opti-
mises the basic algorithm shown in Definition 14 by not transforming the whole
list at every step, but by constructing the permutation ModPerm which must be
applied to the rest of the list at each step. The final value of variable ModPerm
is the canonicalising permutation. Also, we use the basic group theory result
that for all g ∈ G, s(x,G)g = s(xg, G), which allows us to calculate just one
stabiliser and use it in two places. Finally, if the group becomes trivial we are
able to terminate the algorithm early. �
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