The AllDifferent Constraint: Efficiency Measures

Ian P. Gent, Ian Miguel, Peter Nightingale
AllDifferent

- A vector of variables must take distinct values
- Very widely used – very important
- Examples:
 - A class of students must have lectures at distinct times
 - In a sports schedule, the teams playing on a particular week are all distinct
 - No pair of golfers play together more than once
 - Sudoku
Van Hoeve surveys various strengths of inference.

In order of increasing strength:
- Weak and fast pairwise decomposition (AC) -- $O(r)$
- Bound consistency – find Hall intervals (as described by Toby) and prune bounds – $O(r \log r)$
- Range consistency – find Hall intervals and prune
- Generalised arc consistency (GAC) – $O(k^{0.5} r d)$

We focus on GAC algorithm by Régin.
GAC AllDifferent

• One expensive pass achieves consistency
• Traditionally has large incremental, backtracked data structure
• Traditionally low priority
• Triggered on any domain change
 – But many changes are processed together
• No paper that we are aware of comprehensively investigates implementation decisions
Our approach

• Investigate optimizations in literature (tried to find everything!)

• Trigger only on relevant values
 – It is not necessary to trigger on all domain removals
 – Identify $O(2r+d)$ trigger values

• Partition the constraint dynamically
 – Algorithm already identifies independent sub-constraints
 – Store and re-use this partition
 – Run expensive algorithm only on sub-constraint
Régin's Algorithm

- Find a maximum matching M from variables to values.
 - Corresponds to a satisfying tuple of the constraint
- If $|M| < r$, the constraint is unsatisfiable
- Construct residual graph R (as described later)
- Edges not in M, and in no cycle in R, correspond to values to prune
Régin's Algorithm

- Described in terms of flow, Ford-Fulkerson BFS algorithm
- Alternative is bipartite graph matching, Hopcroft-Karp or other algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régis's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régis's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Find maximum flow from s to t
- Ford-Fulkerson algorithm
Régin's Algorithm

- Completed maximum flow from s to t
- Covers all variables (constraint is satisfiable)
- One of 24
Régin's Algorithm

• Find strongly-connected components
Régin's Algorithm

- Strongly-connected components (SCCs)
 - Vertices \(i\) and \(j\) in same SCC iff:
 - Path from \(i\) to \(j\) and from \(j\) to \(i\) in digraph
 - Found by Tarjan's algorithm
 - DFS
 - SCC='Maximal set of cycles'
Régis's Algorithm

- Find strongly-connected components
Régis's Algorithm

- Cycle within SCC
- Apply cycle to find different maximum flow
- No cycles between SCCs
Régin's Algorithm

- Cycle within SCC
- Apply cycle to find different maximum flow
- No cycles between SCCs
Régis's Algorithm

- No cycles between SCCs
- No maximum flows involving \(x_3=2 \) or \(x_4=2 \)
Régin's Algorithm

- Remove edges which are:
 - Between SCCs
 - Not in flow
- Corresponds to theorem by Berge, 1973
Implementation

• Key assumption: don't maintain the graph, discover it as you traverse
 – Domain queries cheap in Minion
 – Alternative: maintain and BT adjacency lists, size $O(rd)$
 – We claim this is better without experiment
 – If Patrick reads the paper, I'm in trouble!
 – If the assumption is not true, our experiments are somewhat less reliable, but the big results should still hold
Optimizations in Literature

- Incremental matching (Régin)
- Priority Queue
 - Execute at low priority and with no duplicate events
- Staged propagation (Schulte & Stuckey)
 - Do simple propagation at high priority, GAC at low priority
- Domain counting (Quimper & Walsh)
- Fixpoint reasoning (Schulte & Stuckey)
 - Solves the 'Double Call Problem'
- Advisors (Lagerkvist & Schulte)
Priority Queue

Instance Families
- contrived
- golomb
- langford
- quasigroup
- n queens
- QWH
- social golfers
- sports scheduling
Incremental Matching
FF-BFS vs HK

- FF is also much easier to implement!
Staged propagation

- Very simple, deals with assigned vars at high priority
Triggering

• Trigger only on relevant values (Dynamic Triggers)
 – It is not necessary to trigger on all domain removals
 – Identify t ≤ 2r+d trigger values from rd
 – Doesn't work on our instances!
 – Ratio not low enough
Triggering

- Domain counting (Lagerkvist & Schulte, variant of Quimper & Walsh)
 - Only trigger when domain size less than \(r \)
 - Very cheap but has almost no effect
- Fixpoint reasoning and advisors
 - No claim in original papers that these are useful for AllDifferent
 - DT results suggest fixpoint reasoning is useless
 - We have something like advisors (although more general) – the variable event queue!
Partitioning the constraint

- Partition by SCCs
 - Each SCC corresponds to an independent sub-constraint
 - Store and re-use this partition (of the variables)
 - Run expensive algorithm only on sub-constraint
Partitioning the constraint

- Small incremental data structure which backtracks efficiently

<table>
<thead>
<tr>
<th>setElements:</th>
<th>setElementIndex:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
</tbody>
</table>

Partition this set into \(\{1,3,5\}\),\(\{2,4,6\}\)

<table>
<thead>
<tr>
<th>setElements:</th>
<th>setElementIndex:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 5 4 2 6</td>
<td></td>
</tr>
<tr>
<td>1 4 2 5 3 6</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{splitPoint}[3]=true\) indicates that adjacent elements 5 and 2 are in different subsets in the partition.
Partitioning the constraint
Partitioning the constraint

- Worth considering for other large constraints
 - GAC GCC partitions in the same way
 - Graph connectivity partitions when you find a 'bridge'
 - Sequence constraint?
 - Regular/Slide partition when variables are assigned in middle
Pairwise AllDifferent

- Trigger only on assignment of a variable
- Remove assigned value from all other variables
- Extremely cheap
- Equivalent to AC on pairwise not-equal constraints
- This is no straw man!
Comparing to Pairwise
Comparing to Pairwise

- GAC AllDifferent never slows down search by more than 2.34 times
- Can be 100,000 times faster
- Most AllDifferent constraints here are tight

<table>
<thead>
<tr>
<th>Instance Families</th>
<th>contrived</th>
<th>golomb</th>
<th>langford</th>
<th>quasigroup</th>
<th>n queens</th>
<th>QWH</th>
<th>social golfers</th>
<th>sports scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Modelling with AllDifferent

- Golomb Ruler
 - Triangular table representing all pairs
 - One AllDifferent constraint
 - Optimization tightens AllDiff
 - Implied constraints

<table>
<thead>
<tr>
<th>Ruler:</th>
<th>0</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>... (monotonic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffs:</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-A</td>
<td>C-A</td>
<td>D-A</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-B</td>
<td>D-B</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-C</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Modelling with AllDifferent

• Langford's problem with 2 instances of each number
 – Model due to Rendl
 – Permutation
 – Represent the indices rather than the actual Langford sequence

For Langford sequence of length n with n/2 numbers.
Pos[1..n] -- AllDifferent
// 1 from the second instance of 1
...
Modelling with AllDifferent

- Quasigroup and QWH
 - Similar to Sudoku (without the sub squares)
 - \(n \times n \) matrix of variables with domain 1..n
 - AllDifferent on each row and each column
 - QWH has some values filled in already
 - Well known to show off GAC AllDifferent
 - Quasigroup has various properties (e.g. associativity, idempotence)
 - Colton & Miguel's model and implied constraints
Modelling with AllDifferent

- N Queens problem
 - Model 1
 - Three vectors representing queen position in row, the number of the leading diagonal, and the number of the secondary diagonal
 - These vectors are all different
 - Model 2
 - One vector representing queen position in row (all different)
 - Constraints to forbid diagonals
 - Tailor creates 30 auxiliary variables for n=16
Modelling with AllDifferent

- Sports scheduling
 - Two viewpoints
 - For each week, a vector of the teams (all different)
 - Vector of games (all different)
 - Channelling constraints between the two (table)
 - Symmetry breaking constraints (< for each game, lex on weeks, lex on stadiums)
 - Stadium constraints (each team plays no more than twice in one stadium)

<table>
<thead>
<tr>
<th>Stadium 1</th>
<th>Stadium 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Modelling with AllDifferent

- **Social Golfers**
 - Very similar to sports scheduling
 - Two viewpoints
 - For each week, a vector of the golfers (all different)
 - Vector of pairs who played together (all different but not necessarily a permutation)
 - Channelling constraints between the two (table)
 - Symmetry breaking constraints (< within the groups, lex on weeks, lex between groups)

```
Week 1:
1  2  4  5  3  6  7  9  ...
```
Modelling with AllDifferent

- As you can see, AllDifferent is widely used! 7 example problems.
- The AllDifferent is tight in all examples
 - In a lot of cases it is worth doing GAC, but not all
 - I think it does depend on tightness, but also on other constraints surrounding the AllDifferent
 - I refuse to offer any advice!
Conclusions

- A bag of useful tricks from the literature
- One new trick which worked: partitioning the constraint
 - Perhaps this is general!
- One new trick which didn't: dynamic triggers from SCC algorithm
- The only modelling advice is to try a couple of different propagators!
Thank You

• Any Questions?